硬核干货——《中小企业 AI 实战指南》免费下载! 了解详情
写点什么

在自动驾驶研发中充分发挥数据的潜能

  • 2019-06-23
  • 本文字数:2513 字

    阅读完需:约 8 分钟

在自动驾驶研发中充分发挥数据的潜能

本次分享内容提纲

  • 数据标注

  • 数据驱动开发

  • 数据驱动决策

前言


上图这是我加入小马智行之前的一个小故事。这不断的提醒我,人工智能需要有足够的数据量,并且充分发挥这些数据的潜能,是我们作为人工智能公司的一个非常重要的核心竞争力。

数据的作用

  1. 数据驱动开发:提到数据的作用我们首先会想到,数据驱动开发,包括感知领域、行为预测领域、决策领域,需要有数据(标注好的数据)来作为我们模型训练的粮食和作为系统准确度评测的依据。

  2. 数据驱动决策:尤其是优先级的决策,作为创业公司我们现在想做的事情,远远多于我们的人力,如何把人力用在我们需要优先解决的问题上,不管在行车安全性、乘坐舒适性、车辆的运营等等,每个方面都有更重要的问题,或者次要一点的问题,需要做优先级的决策,通过对于数据的分析和处理,拿出一些有效的决策。

  3. 展现公司实力:通过对数据的分析,展示出来的结果是可以展示公司实力的。

  4. 满足监管要求:数据的保存、处理、分析也是为了满足监管的要求。

数据标注

在讲数据驱动开发和决策前,先分享下关于数据标注的一些体会。


  1. 评价指标



对于数据标注来说,它的评价指标有:


① 团队规模:只有你有足够大的团队,你才能在单位时间内标注出你所需要的数量的数据。


② 效率和成本:二者间的关系像是硬币的正反两面,效率是指单个人单位时间的产出量,成本是指单位产出的人力、设备、场地开销。


③ 质量:标注的准确度,比如标注一个激光点云里障碍物的尺寸、位置、朝向的准确度,又比如预测下一步行为的准确度。


这是大家通常所关注的三个方面,下面再讲下另外两个很重要的点:


① 能力多样性:能够处理各种不同种类的标注任务的能力,对地图来说我们需要标注车道线,对于感知来说我们需要标交通灯、障碍物,还有行为预测所需要的标注等。


② 标准灵活性:各种长尾场景(如雨点,汽车尾气等)的处理方式在不断的探索和迭代,随之标注的方式也在不断的探索和迭代,如何保证在这些快速探索和迭代过程中标注团队直接的高效沟通,不至于出现混乱,这需要花很多精力去做。


  1. 团队构成


如下图所示:



  1. 效率提升与成本控制


技术手段:


① 默认障碍物大小:第一帧可以通过一些人机交互的方式默认障碍物大小。



② 自动追踪外推:接下来,比如说标注员跳了一帧到第 3 帧,然后把车新的位置手工找到了,当再跳到第 5 帧的时候,系统就可以通过智能算法做到自动的追踪外推来找到车在第 5 帧中的新位置。



③ 自动插值:当车在第 1 帧、第 2 帧、第 5 帧的位置都标出来之后,系统可以做自动插值,自动找到车在第 2 帧,第 4 帧中的位置。



这里大概看下车的整个标注过程,以及人机交互方面的技巧,通过人工智能的方法提高标注员的效率。


相比于车载系统,智能标注系统所受的限制更少:


① 更多的可用信息:比如在尝试智能标注某一帧数据的时候,可以参考其后的数据帧里的信息;


② 更宽松的计算资源和时间限制。


需要注意的问题:


  • 对自动化结果的依赖,可能导致标注结果中产生系统性偏差

  • 如何发现和识别这些系统性偏差

  • 不同的自动化功能,产生系统性偏差的几率和程度各不相同


非技术手段


① 薪酬激励


② 组织结构设计:这里最主要的是信息流动的结构,比如:具体的某些场景的某个细节如何通过标注平台的某些技巧去标注,如何促进这些技巧在标注团队内部被高效地总结、传播。


③ 各工段之间成本平衡:系统化的思考,我们标准的流程分为标注、质检、复检等多个工段,通过各工段的配合达到整体的优化,而不是单纯的只优化某个工段。


当然所有的非技术手段依赖于标注平台对于标注任务生命周期与标注团队架构、绩效的管理。


  1. 系统能力



这里的一个核心目标是何如保证系统在大规模标注团队持续高频使用的条件下能保持稳定运行。这里举一个因为平台不稳定性产生的焦虑感,进而导致恶性循环的例子:


  • 保存失败:比如标注了 5 分钟,尝试保存的时候失败了。

  • 工作成果丢失的焦虑感

  • 更加频繁地尝试保存

  • 系统负载进一步提高

  • 系统稳定性和响应速度进一步下降


而且有些时候牵扯到外部合作商时,会进步一加剧一种情况:信任成本升高,降低长期合作意愿。


这对我们提出的要求是:


① 不断优化、提升效率


② 保持稳定、保障效率:最细微的稳定性问题都可能导致效率下降


③ 良好的工程实践:


  • 与线上系统隔离的完整测试环境,要求能较为准确地重现线上数据规模和数据分布

  • 分级发布流程

  • 线上系统监控及应急处理预案


关于提升效率的 Tips:


  • 开发:实现效率优化方案

  • 测量:在实现方案后,对标注员的操作流程和节奏进行记录和准确复现

  • 提升:在测量和观察中,发现可能的效率提升点,然后再循环到第一点。

数据驱动开发


上图是我们的一个愿景:先是利用机器智能,提高人工标注效率,然后利用人工标注结果,提升机器智能,最后再反过来利用机器智能,提高人工标注效率,达到一个交互促进的过程。


  1. 充分利用海量标注数据


① 分布式训练和评测系统


② 人工标注的质量是有极限的,这需要我们:


  • 对标注数据的进一步处理与修正

  • 在设计评测指标时,要考虑到标注数据常见的质量问题。避免设计出的评测指标对于这些常见质量问题过于敏感。


  1. 数据索引平台


数据在各个维度上的分布,例如:


  • 时段和天气

  • 道路等级

  • 障碍物种类

  • 住宅、商业区、工业区


当我有了索引平台,可以做的事情有:


① 标注任务筛选:基于分布上不平衡的维度,对路测原始数据的自动化初筛


② 训练数据选取:按照指定的维度检索访问标注数据


③ 评测数据集维护:难度和规模分级

数据驱动决策

  1. 路测事件分析



  • 问题路段

  • 问题模块

  • 问题车辆

  • 问题时间段

  • 深入分析的工具


  1. 数据展现方式


这里我们主要面临的挑战:


  • 准确性:给的数据要靠谱,有说服力

  • 实时性:每次采集的数据都可以实时更新

  • 易用性:从界面上可以直观的看到关键数据


这需要我们:


① 以用户为中心,依据关键决策流程,不断迭代与优化


② 根据不同受众和使用场景,提供差异化的视图


  • 运营团队周会

  • 公司高管 C-level

  • 团队 tech lead


③ 在每个视图中,提供最简洁实用的图表


  • 在默认视图中,提供刚刚好用户想要的信息,不多不少

  • 对于每一个数据点,提供进一步深入分析的工具

作者介绍

宋浩,Pony.ai Tech lead。清华大学交叉信息研究院博士,此前任职于 Facebook 广告分发策略优化部门。目前在 Pony.ai 负责自动驾驶数据平台与应用的技术研发。


本文来自 DataFun 社区


原文链接


https://mp.weixin.qq.com/s/Kgf_aXkx3x-Tv52TmDEZ-g


2019-06-23 08:004988

评论

发布
暂无评论
发现更多内容

实践案例丨云连接CC实现跨区域多VPC与线下IDC Server互联

华为云开发者联盟

云服务 IDC

如何进步神速

Sean

学习 个人成长

Electronjs

Neil

Java 大前端 Electron 客户端开发

架构师训练营大作业

叮叮董董

USDT支付系统开发技术方案,数字货币承兑商支付

13530558032

2020年7月云主机性能评测报告

博睿数据

云计算 测试 公有云 评测 排行榜

不想搞Java了,4年经验去面试10分钟结束,现在Java面试为何这么难

Java架构师迁哥

LeetCode题解:622. 设计循环队列,使用数组,JavaScript,详细注释

Lee Chen

大前端 LeetCode

数字货币量化交易,量化对冲搬砖系统开发

13530558032

Spring Cloud 微服务实践(1) - 用Initializr初始化

xiaoboey

Spring Cloud Eureka Gateway Hoxton

Spring Cloud 微服务实践(2) - Gateway重试机制

xiaoboey

maven Spring Cloud Gateway modules 重试

关于手机里的IP地址,你不得不知道的“秘密”

脑极体

python——自定义序列类

菜鸟小sailor 🐕

直播倒计时|30分钟带你解锁“技术写作”新技能

有只小耳朵

技术 写作 直播 技术创作 RTC征文大赛

高速路二维码报警定位系统开发,二维码报警定位功能

13530558032

大数据下单集群如何做到2万+规模?

华为云开发者联盟

大数据 集群

活着

GongTeng95

一次旅途

GongTeng95

UML练习1-食堂就餐卡系统设计

博古通今小虾米

UML

在线游戏,如何把握住1个亿以上的DAU?

博睿数据

运维 监控 AIOPS 系统 用户体验

Spring Cloud 微服务实践(0) - 开篇闲话

xiaoboey

微服务 Spring Cloud Spring Boot Spring Framework

Java 基础语法

InfoQ_34a83d636158

网上赌博输了怎么办?上岸戒赌是唯一的选择

jdxj

网上赌博输了怎么办 网上赌博玩快三输了怎办 网上玩快三输了怎么回血 网赌输了怎么戒赌

危与机并存 保险业如何走好线上线下业务并举转型之路?

博睿数据

运维 监控 保险 AIOPS 系统

血的教训!千万别在生产使用这些 redis 指令

redis 学习 编程 程序员

Python基础知识(二)

Python基础

CentOS 7 安装 Python 3.7

wong

Python

算法大赛评委亲授通关秘籍,报名倒计时!

易观大数据

2020年8月北京BGP机房网络质量评测报告

博睿数据

测试 机房 评测 排行榜 IDC

一次压缩引发堆外内存过高的教训

AI乔治

Java kafka JVM

架构师训练营结业作业

superman

在自动驾驶研发中充分发挥数据的潜能_AI&大模型_DataFunTalk_InfoQ精选文章