把握行业变革关键节点,12 月 19 日 - 20 日,AICon北京站即将重磅启幕! 了解详情
写点什么

用 Airflow 实现 EMR 集群的动态启停并通过 Livy 远程提交任务

  • 2020-02-27
  • 本文字数:9214 字

    阅读完需:约 30 分钟

用 Airflow 实现 EMR 集群的动态启停并通过 Livy 远程提交任务

互联网行业每天都有大量的日志生成,需要在固定时间段对数据进行 ETL 工作。用户常规的做法是启动一组长期运行的 EMR 集群,配置远程提交任务的服务器,结合自身的任务调度系统定期提交任务,但集群执行完成任务之后会闲置,造成不必要的开销。另一种方法是在需要执行任务的时候启动集群,任务完成之后关闭集群,但因为每次启动集群后,主节点与核心节点的 IP 都会发生分变化,导致每次都需要重新配置提交任务的服务器,造成额外的工作负担。本文介绍了一种通过 Apache Airflow 任务调度系统动态启停 Amazon EMR 集群的方法,并通过 EMR 内置的 Livy 远程提交作业,这样可以节省大量的成本并且无需进行过多的额外配置。

1. 相关技术介绍

在开始之前,请先对以下技术进行简单了解。

1.1 Apache Airflow

Apache Airflow 是一款开源的任务调度系统,用户通过创建 DAG(有向无环图)来定义任务的流程,图中的每个节点就是需要执行的任务,不同 DAG 之间的任务可以相互依赖。通过 Airflow 我们可以定时执行脚本,并且它提供了 web 界面供用户可视化地查看任务执行情况。

1.2 Apache Livy

Apache Livy 是 Hadoop 生态圈中提供远程提交任务功能的应用程序。它以 Rest API 的方式提供了 Session 与 Batches 两种集群执行任务的方法。Session 指的是将集群需要执行的代码写在对 Livy 请求中,目前支持 spark、pyspark、sparkr 与 sql 等四种方式与集群交互。Bathches 指的是将代码存放在指定位置,在请求中提供路径,让集群执行代码。例如将 jar 包存放在 S3 上,在请求 Livy 的时候提供 jar 包的路径,从而让集群直接执行 jar 包,好处是无需在集群上配置执行代码所需的依赖。

2. 演练

通过本文示例,我将向您展示如何实现以下方案:


基于开源调度工具 Airflow 编排提交 Spark Jobs 到 EMR 做批处理,Job 开始之前启动 EMR 集群,对集群节点采用 Spot 实例,所有 Job 结束后关闭 EMR 集群。

2.1 流程架构图与过程简介


(1)在一台 EC2 上配置 Airflow;


(2)定义 Airflow 工作流,其中包含创建集群,Spark 任务步骤与终止集群等任务;


(3)向 Livy 提交任务;


(4)EMR 从 S3 中读取数据,对数据进行处理完成之后重新写入 S3;


(5)工作完成,终止集群。

2.2 前提条件

(1)本文示例所使用的区域 us-east-1;


(2)在该区域创建一台 EC2,并确保与 EC2 绑定的 IAM Role 有 EMR 集群的 Full Access;


(3)拥有创建 EMR 集群所需的默认角色:EMR_DefaultRole 与 EMR_EC2_DefaultRole;


(4)创建 S3 桶,下载 jar 包 spark-examples_2.11-2.4.4 和数据集 emrdata.txt,并上传至 s3。

2.3 实现过程

2.3.1 在 EC2 上配置 Airflow

(1)登陆 EC2,安装 Airflow 已经相关依赖


Python


sudo yum update -ysudo yum install -y python-pip gcc mysql-devel python-devel mysqlsudo pip install mysql-pythonsudo yum install -y python3sudo pip3 install boto3sudo pip3 install requests
# 安装Airflowsudo pip install apache-airflowsudo pip install 'apache-airflow[celery]'airflow initdb
复制代码


(2)创建 RDS for Mysql 数据库供 Airflow 使用,对数据库性能要求不高,因此使用默认配置即可



(3)更改 airflow.cfg 配置文件,并测试是否能打开 Airflow 的 web 页面


Python


cd airflowvim airflow.cfg
# 找到sql_alchemy_conn等参数所在位置,替换为创建的数据库信息sql_alchemy_conn = mysql://admin:12345678@database-for-airflow.cdtwa5j4xten.us-east-1.rds.amazonaws.com/airflowdb
# Exit vim, Update Airflow Databaseairflow initdb
# 配置celery相关参数vim airflow.cfg
# 找到executor位置,将执行器设置为celery,可保证不相互依赖的任务可以并行执行executor = CeleryExecutor
# 找到broker_url与result_backend参数的位置broker_url = sqla+mysql://admin:12345678@database-for-airflow.cdtwa5j4xten.us-east-1.rds.amazonaws.com:3306/airflowdbresult_backend = db+mysql://admin:12345678@database-for-airflow.cdtwa5j4xten.us-east-1.rds.amazonaws.com:3306/airflowdb
# 开启airflow的webserver,在网页上输入EC2的DNS,查看是否能打开网页(注意打开安全组,并且如果本地连上的是公司的vpn,可能会出现无法打开网页的情况)airflow webserver -p 8080 &
# 启动workerairflow worker &
# 启动flower,可对worker中的任务进行可视化(要看到网页注意打开5555端口)airflow flower &
复制代码


 
复制代码

2.3.2 定义工作流

现定义如下两个 Airflow 的 DAG:


dag_transform_calpi



(1)create_emr_cluster:创建 EMR 集群;


Python


# -*- coding: UTF-8 -*-
import boto3import time
emr_client = boto3.client('emr', region_name='us-east-1')
# 定义集群名称,集群名称不要与当前运行的集群重名name = 'emr-cluster'
# 定义instance,可自定义实例的数量与类型intances = { 'InstanceGroups': [ { 'Market': 'SPOT', 'InstanceRole': 'MASTER', 'InstanceType': 'm4.xlarge', 'InstanceCount': 1, }, { 'Market': 'SPOT', 'InstanceRole': 'CORE', 'InstanceType': 'm4.xlarge', 'InstanceCount': 2, } ], 'KeepJobFlowAliveWhenNoSteps': True}
# 定义集群中的应用applications = [ { 'Name': 'Hadoop' }, { 'Name': 'Pig' }, { 'Name': 'Livy' }, { 'Name': 'Hive' }, { 'Name': 'Hue' }, { 'Name': 'Spark' }]
if __name__ == '__main__':
# 创建emr集群 emr_client.run_job_flow( Name=name, ReleaseLabel='emr-5.12.0', Instances=intances, Applications=applications, JobFlowRole='EMR_EC2_DefaultRole', ServiceRole='EMR_DefaultRole')
# 持续发送请求,直到创建的集群状态处于Waiting为止 flag = True while flag: time.sleep(20) r = emr_client.list_clusters(ClusterStates=['WAITING']) for i in r['Clusters']: if i['Name'] == name: flag = False
复制代码


(2)create_livy_session:创建 Livy 会话;


Python


# -*- coding: UTF-8 -*-import requestsimport jsonimport pprintimport boto3
# 获取集群的DNS,其中name为你的集群名称name = 'emr-cluster'emr_client = boto3.client('emr', region_name='us-east-1')r = emr_client.list_clusters(ClusterStates=['WAITING'])for i in r['Clusters']: if i['Name'] == name: cluster_id = i['Id']r = emr_client.describe_cluster(ClusterId=cluster_id)emr_dns = r['Cluster']['MasterPublicDnsName']
# livy_host为配置在emr集群上livy的url,无需修改代码livy_host = 'http://' + emr_dns + ':8998'data = {'kind': 'pyspark'}headers = {'Content-Type': 'application/json'}r = requests.post(livy_host + '/sessions', data=json.dumps(data), headers=headers)pprint.pprint(r.json())
复制代码


(3)sleep:等待会话创建完成;


(4)calpi:以 batches 的方式执行 spark 任务计算 pi 值;


Python


# -*- coding: UTF-8 -*-import requestsimport jsonimport textwrapimport pprintimport boto3
# 获取执行jar包任务的livy batch的url,其中name为你的集群名称name = 'emr-cluster'emr_client = boto3.client('emr', region_name='us-east-1')r = emr_client.list_clusters(ClusterStates=['WAITING'])for i in r['Clusters']: if i['Name'] == name: cluster_id = i['Id']r = emr_client.describe_cluster(ClusterId=cluster_id)emr_dns = r['Cluster']['MasterPublicDnsName']batch_url = 'http://' + emr_dns + ':8998/batches'headers = {'Content-Type': 'application/json'}
# 提交任务data = {"file": "s3://xiaoyj/emr/spark-examples_2.11-2.4.4.jar", "className": "org.apache.spark.examples.SparkPi"}r = requests.post(batch_url, data=json.dumps(data), headers=headers)pprint.pprint(r.json())
复制代码


(5)query_completed:外部任务,依赖于第二个 DAG(dag_query),即等待查询完成之后,执行下一个任务;


(6)终止集群。


Python


# -*- coding: UTF-8 -*-import boto3import time
# 终止集群,其中name为你的集群名称name = 'emr-cluster'emr_client = boto3.client('emr', region_name='us-east-1')flag = Truewhile flag: time.sleep(120) r = emr_client.list_clusters(ClusterStates=['WAITING']) for i in r['Clusters']: if i['Name'] == name: emr_client.terminate_job_flows(JobFlowIds=[i['Id']]) flag = False
复制代码


dag_query



(1)sleep_completed:外部任务,依赖于第一个 DAG(dag_transform_calpi),即等待 Livy 会话执行下一个任务;


(2)transform:对之前上传到 S3 上的文本文件进行聚合、转换;


Python


# -*- coding: UTF-8 -*-
import requestsimport jsonimport textwrapimport pprintimport boto3
# 获取提交任务的livy_url,其中name为你的集群名称name = 'emr-cluster'emr_client = boto3.client('emr', region_name='us-east-1')r = emr_client.list_clusters(ClusterStates=['WAITING'])for i in r['Clusters']: if i['Name'] == name: cluster_id = i['Id']r = emr_client.describe_cluster(ClusterId=cluster_id)emr_dns = r['Cluster']['MasterPublicDnsName']livy_url = 'http://' + emr_dns + ':8998/sessions/0/statements'headers = {'Content-Type': 'application/json'}
# 提交任务,data中的code为在emr中执行的代码,对s3中的文件进行转化操作,完成后将结果存放回s3作为中间结果data = { 'code': textwrap.dedent(""" import json sc._jsc.hadoopConfiguration().set('fs.s3a.endpoint', 's3-us-east-2.amazonaws.com') text_file = sc.textFile("s3a://xiaoyj/emr/emrdata.txt") text_file = text_file.map(lambda x: x.split('::')) text_file = text_file.map(lambda x: (int(x[0]), x[1:])) text_file = text_file.groupByKey().map(lambda x: (x[0], list(x[1]))) text_file = text_file.sortByKey() text_file = text_file.map(lambda x: {x[0]: x[1]}) text_file = text_file.map(lambda x: json.dumps(x)) text_file.coalesce(1).saveAsTextFile("s3a://xiaoyj/emr/middle_result") print("Transform Complete!") """)}r = requests.post(livy_url, data=json.dumps(data), headers=headers)pprint.pprint(r.json())
复制代码


(3)check_s3:检查 S3 中是否有上一步生成的中间结果;


Python


# -*- coding: UTF-8 -*-
import boto3import time
# 轮询s3,确认transform任务是否执行完成(即s3中是否有middle_result文件生成),name为你的s3桶名称name = 'xiaoyj's3_client = boto3.client('s3', region_name='us-east-1')flag = Truewhile flag: time.sleep(60) r = s3_client.list_objects(Bucket=name) for i in r['Contents']: if i['Key'] == 'emr/middle_result/part-00000': flag = False
复制代码


(4)query:对上一步生成的中间结果进行查询。


Python


# -*- coding: UTF-8 -*-
import requestsimport jsonimport textwrapimport pprintimport boto3
# 获取提交任务的livy_url,其中name为你的集群名称name = 'emr-cluster'emr_client = boto3.client('emr', region_name='us-east-1')r = emr_client.list_clusters(ClusterStates=['WAITING'])for i in r['Clusters']: if i['Name'] == name: cluster_id = i['Id']r = emr_client.describe_cluster(ClusterId=cluster_id)emr_dns = r['Cluster']['MasterPublicDnsName']livy_url = 'http://' + emr_dns + ':8998/sessions/0/statements'headers = {'Content-Type': 'application/json'}
# 提交任务,data中的code为在emr中执行的代码,对s3中的文件进行转化操作,完成后将结果存放回s3作为中间结果data = { 'code': textwrap.dedent(""" import json from pyspark.sql import HiveContext, Row hiveCtx = HiveContext(sc) input = hiveCtx.read.json("s3a://xiaoyj/emr/middle_result/part-00000") input.registe rTempTable("tbn") result = hiveCtx.sql("SELECT size(`9`) from tbn") result = result.rdd.map(lambda row: row[0]) result.coalesce(1).saveAsTextFile("s3a://xiaoyj/emr/result") print("Search Complete!") """)}r = requests.post(livy_url, data=json.dumps(data), headers=headers)pprint.pprint(r.json())
复制代码

2.3.3 创建 Airflow 工作流

(1)在 airflow 文件夹中创建 dags 文件夹,并进入到文件夹中;


(2)定义工作流(注意开头的 # — coding: UTF-8 –不要省略,并且 bash_command 需替换为自己任务所在的路径);


Python


vim dag_transform_calpi.py
# -*- coding: UTF-8 -*-
from airflow import DAGfrom airflow.operators.bash_operator import BashOperatorfrom datetime import datetime, timedeltafrom airflow.sensors.external_task_sensor import ExternalTaskSensor
default_args = { 'owner': 'Airflow', 'depends_on_past': False, 'start_date': datetime.now().replace(microsecond=0), 'email': ['756044579@qq.com'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 0, 'retry_delay': timedelta(minutes=5), # 'queue': 'bash_queue', # 'pool': 'backfill', # 'priority_weight': 10, # 'end_date': datetime(2016, 1, 1),}
dag = DAG('dag_transform_calpi', default_args=default_args, schedule_interval=timedelta(days=1))
# 创建emr集群t0 = BashOperator( task_id='create_emr_cluster', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/create_emr_cluster.py', dag=dag)
# 创建livy的会话t1 = BashOperator( task_id='create_livy_session', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/create_session.py', dag=dag)
# 等待会话创建完成t2 = BashOperator( task_id='sleep', bash_command='sleep 20', dag=dag)
# 计算pi值t3 = BashOperator( task_id='calpi', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/calpi.py', dag=dag)
# 终止emr集群t4 = BashOperator( task_id='terminate_cluster', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/terminate_cluster.py', dag=dag)
# dag_query中的spark sql任务external_task = ExternalTaskSensor( external_task_id='query', task_id='query_completed', external_dag_id='dag_query', dag=dag)
# 定义airflow的有向无环图t0 >> t1t1 >> t2t2 >> t3external_task >> t4
复制代码


Python


vim dag_query.py # -*- coding: UTF-8 -*-from airflow import DAGfrom airflow.operators.bash_operator import BashOperatorfrom datetime import datetime, timedeltafrom airflow.sensors.external_task_sensor import ExternalTaskSensor
default_args = { 'owner': 'Airflow', 'depends_on_past': False, 'start_date': datetime.now().replace(microsecond=0), 'email': ['756044579@qq.com'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 0, 'retry_delay': timedelta(minutes=5), # 'queue': 'bash_queue', # 'pool': 'backfill', # 'priority_weight': 10, # 'end_date': datetime(2016, 1, 1),}
dag = DAG('dag_query', default_args=default_args, schedule_interval=timedelta(days=1))
# 对s3上的文本文件进行转化操作t0 = BashOperator( task_id='transform', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/transform.py', dag=dag)
# 轮询s3,查看中间结果是否生成t1 = BashOperator( task_id='check_s3', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/check_s3.py', dag=dag)
# spark sql任务t2 = BashOperator( task_id='query', bash_command='python3 /Users/xiaoyj/Desktop/emr_poc/query.py', dag=dag)
# dag_transform_calpi中的sleep任务external_task = ExternalTaskSensor( external_task_id='sleep', task_id='sleep_completed', external_dag_id='dag_transform_calpi', dag=dag)external_task >> t0t0 >> t1t1 >> t2
复制代码



(3)重制Airflow数据库;
Python

复制代码


airflow resetdb



(4)启动Airflow,-s为当前日期,-e是结束日期,均设置为当日的日期(若工作流执行失败并想重头开始执行工作,需要先执行airflow resetdb)
Python

复制代码


airflow backfill dag_transform_calpi -s 2019-12-02 -e 2019-12-02 & airflow backfill dag_query -s 2019-12-02 -e 2019-12-02



## 3. 展示
(1)打开AWS EMR控制台,可以观察到集群正在创建;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy5.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy5.jpg)
(2)待集群创建完成后,获取主节点DNS,并打开网页;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy6.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy6.jpg)
(3)观察到Livy上并行提交了两个任务分别是spark对文本的tansform操作和jar包计算pi值的任务;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy7.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy7.jpg)
(4)pi值计算完成;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy8.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy8.jpg)
(5)待Transform任务完成,Spark SQL任务开始执行;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy9.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy9.jpg)
(6)执行完成后可以在s3上可以看到Transform任务生成的middle result和Spark SQL任务生成的最终结果;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy10.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy10.jpg)
(7)下载middle_result中的文件,可以看到聚合结果;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy11.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy11.jpg)
(8)下载result中的文件,可以查看到最终结果(统计编号为9的列表中包含53组数据,-1表示其他json文件没有编号为9的;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy12.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy12.jpg)
(9)任务执行完毕,发现集群自动终止;
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy13.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy13.jpg)
(10)再查看远程服务器上Airflow的web界面,发现两个dag已经执行完毕。
[](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy14.png)](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy14.jpg)
## 4. 总结
本文展现了如何使用Airflow启动EMR集群,并通过Livy远程提交任务,在任务完成后终止集群。成本节省主要体现在两个方面:1)每天在需要执行ETL工作时启动集群,任务执行完成后终止集群,因此不会出现空闲的集群;2)EMR可以配合Spot实例使用,从而节省更多的成本。另一个好处是使用Livy无需额外配置远程提交任务的服务器,并且EMR集成了Livy的一键安装,造成了极大的方便。
## 本篇作者
<footer> ![](https://s3.cn-north-1.amazonaws.com.cn/awschinablog/Author/xiaoyj.jpg)
### [](https://amazonaws-china.com/cn/blogs/china/tag/%E8%82%96%E5%85%83%E5%90%9B/)
AWS解决方案架构师,负责基于AWS云计算方案的架构咨询和设计实现,同时致力于数据分析与AI的研究与应用。</footer>
**作者介绍:**翟羽翔,AWS解决方案架构师,负责基于AWS云计算方案的架构咨询和设计实现,同时致力于数据湖的应用和推广。
**本文转载自AWS技术博客。**
**原文链接:**https://amazonaws-china.com/cn/blogs/china/dynamic-start-stop-of-emr-cluster-with-airflow-and-remote-submission-of-tasks-via-livy/
复制代码


2020-02-27 16:301220

评论 1 条评论

发布
用户头像
2021-08-02 08:53
回复
没有更多了
发现更多内容

什么是云,为什么要提倡师生使用云教室?

青椒云云电脑

云教室 云教室解决方案

云教室是什么意思?云教室与传统教室的区别?

青椒云云电脑

电线电缆行业生产管理怎么数字化?

万界星空科技

数字化转型 MES系统 云mes 万界星空科技mes 电线电缆行业

马斯克发布一封指控 Sam Altman 的匿名信引发猜测,OpenAI “宫斗大戏”终迎结局?

博文视点Broadview

NFTScan | 11.20~11.26 NFT 市场热点汇总

NFT Research

NFT\ NFTScan nft工具

营销数智化解析第7期:用友BIP | CRM 渠道工作台、伙伴管理

用友BIP

营销数智化

文心一言 VS 讯飞星火 VS chatgpt (144)-- 算法导论12.1 4题

福大大架构师每日一题

福大大架构师每日一题

3D数字孪生场景编辑器

3D建模设计

数字孪生 低代码平台 3d建模 3D场景编辑器 3D场景应用

使用Terraform创建Docker镜像和容器

互联网工科生

Terraform Docker 镜像

3招解决时序数据高基数难题,性能多维度提升!

华为云开发者联盟

数据库 后端 时序数据库 华为云 华为云开发者联盟

国内怎样申请openai 内涵120美刀的api key?内涵120美刀,月底要付120美元吗?

月满楼

ChatGPT chatgpt api

青椒云一体机,一起体验云桌面

青椒云云电脑

桌面云 云桌面

数字技术,为企业全面预算管理贡献数智力量

智达方通

数字化转型 数字技术 全面预算

“火焰杯”软件测试高校就业选拔赛获奖名单揭晓,人工智能与大数据学院两名学子上榜,奖金2万元!

测吧(北京)科技有限公司

测试

3D模型材质编辑器

3D建模设计

纹理处理 材质 贴图 模型材质 三维模型材质

分布式基础概念 - ZAB协议&负载均衡策略

派大星

分布式 ZAB Java 面试题

什么是云电脑?云电脑超详细技术讲解

青椒云云电脑

云电脑 云电脑平台

从 15000 家参赛企业脱颖而出,涛思数据荣获中国创新创业大赛“优秀企业”

TDengine

tdengine 时序数据库

用二维码展示产品信息,轻松解决产品宣传难题

草料二维码

二维码 产品更新 草料二维码 产品宣传

适合工业设计企业的云端图形工作站

青椒云云电脑

图形工作站

谷歌SEO适用于独立站优化的8个核心算法

九凌网络

云桌面:优点、缺点和定义功能

青椒云云电脑

云桌面 云桌面方案

万界星空科技QMS质量管理系统介绍

万界星空科技

QMS 质量管理系统 万界兴科科技QMS 质量管理QMS系统 生产质量管理

用 Airflow 实现 EMR 集群的动态启停并通过 Livy 远程提交任务_行业深度_AWS_InfoQ精选文章