写点什么

微软和谷歌各自开源新的分布式深度学习训练框架

  • 2020-11-04
  • 本文字数:2279 字

    阅读完需:约 7 分钟

微软和谷歌各自开源新的分布式深度学习训练框架

微软和谷歌一直积极致力于训练深度神经网络的新模型,并推出了各自的新框架,Microsoft PipeDreamGoogle GPipe。二者使用了类似的原理来扩展深度学习模型的训练能力,具体细节在相应的研究论文中分别给出(参见PipeDreamGPipe的论文)。


作为深度学习生命周期中的一个组成环节,训练工作在模型扩展到一定规模时是十分具有挑战性的。虽然训练一个实验性的基本模型相对简单,但训练的复杂性会随模型的质量和规模呈线性增长。例如,在2014年ImageNet视觉识别竞赛中,具有 400 万参数的GoogleNet以 74.8%的正确率胜出。三年后,2017 年 ImageNet 竞赛的胜出者 SENet(Squeeze-and-Excitation Networks)给出了 82.7%的正确率,但模型规模增大了 36 倍多,达 1.458 亿个参数。同一时期,GPU 内存规模只增长了约三倍.



模型规模的扩展意在实现更高的正确率,但会使模型训练愈发具有挑战性。上面的例子说明,依赖改进 GPU 架构去实现更高效的训练是难以持续的策略,继续实现训练的扩展需要分布式计算方法,将工作负载并行化到各个计算节点上。训练并行化这一理念并不难理解,但是其实现是非常复杂的。开发人员需考虑如何将模型的知识获取分区到不同的节点,随后如何将各部分重新整合为一个整体的模型。训练并行化是深度学习模型扩展的必须手段。针对挑战,谷歌和微软两家公司各自付出了长达多月的努力来做研究和工程化,并分别发布了 GPipe 和 PipDream。

Google GPipe

Gpipe 聚焦于扩展深度学习的训练负载。在深度学习模型中,人们常常忽视训练过程的复杂性对架构的影响。训练数据集的规模正越来越大,也越来越复杂。例如在医疗领域,常会涉及需使用数百万张高分辨图像训练的模型。这类模型通常需要很长的训练时间,消耗高昂的内存和 CPU 成本。


可行的深度学习模型并行方法分为数据并行和模型并行。数据并行方法使用大规模集群,将数据分布到各个节点。模型并行则将模型迁移到 GPU 和 TPU 等加速器上,借助这些专用硬件来加速模型的训练。从更高层次看,几乎所有的训练数据集都可以按照一定的逻辑实现并行化,但是并非所有的模型皆可并行。一些深度学习模型能分解为一些可并行独立训练的分支,相应的经典策略是将计算划分为分区,不同的分区指派给相应的模型分支。但该策略并不能很好地应用于具有序贯(sequential)层堆叠结构的深度学习,这对实现高效的并行计算提出了挑战。


GPipe 使用了称为“流水线”(pipelining)的方法,实现数据并行和模型并行的结合。具体而言,GPipe 提供分布式集群学习软件库,基于同步随机梯度下降(SGD)和流水线并行实现训练,适用于所有具有多个序贯层的 DNN。GPipe 将模型分区到多个加速器上,自动将训练中的 mini-batch 切分为更小粒度的 micro-batche。模型通过在加速器上的并行执行,最大化训练过程的可扩展性。


下图展示的 GPipe 模型中,具有多个序贯层的神经网络被分区到四个加速器。其中 F(K)是第 K 个分区的前向传播计算组合,B(k)是相应的后向传播函数。B(k)计算依赖于前一层的 B(k+1)计算以及中间层激活的 F(k)。图中上半部分显示由于网络的顺序处理本质,导致资源利用率不高。下半部分显示 GPipe 通过将输入的 mini-batch 切分为更小粒度的 macro-batch 处理,实现了加速器的同时并行处理。



图片来源:https://arxiv.org/pdf/1811.06965.pdf

Microsoft PipeDream

数月前,微软研究院提出了意在提高分布式深度学习效率的项目系列Fiddle。PipeDream 是 Fiddle 中率先发布的项目,聚焦于实现深度学习模型训练的并行化目标。


不同于其它系统,PipeDream 针对 GPipe 在数据并行和模型并行中同样面对的一些挑战,采用了一种称为“流水线并行”(pipeline parallelism)的方法扩展深度学习模型训练水平。通常,数据并行方法在基于云的架构中实现训练时存在较高的通信成本问题,长期来看会拖累 GPU 的计算速度。另一方面,模型并行技术不能有效地利用硬件资源,并将根据特定硬件部署实现模型切分的重任甩给了程序开发人员。



图片来源:https://www.microsoft.com/en-us/research/uploads/prod/2019/08/fiddle_pipedream_sosp19.pdf


使用流水线并行技术,PipeDream 解决了一些存在于数据并行和模型并行方法中的挑战性问题。流水线并行计算将 DNN 模型的序贯层划分为多个阶段(stage),每个阶段包括了一组模型中连续的层,映射给单独的 GPU,去执行阶段中所有层的前向传播和后向传播计算。


对于给定的深度神经网络,PipeDream 会根据对单个 GPU 的性能精简分析,自动判定如何划分 DNN 运算符,实现各个阶段的计算负载均衡,同时最小化计算平台的通信量。PipeDream 支持在模型多样(包括计算和通信)和平台多样(包括互联拓扑和层级带宽)情况下实现高效的负载均衡。相比数据并行和模型并行,PipeDream 的并行训练方法具有多种优点。例如,PipeDream 降低了工作节点的相互通信量,因为流水线并行中每个工作节点只需向其他节点传输部分的梯度和激活(activation)输出。此外,PipeDream 实现了计算和通信的分离,使得并行化更易于实现。



图片来源:https://www.microsoft.com/en-us/research/uploads/prod/2019/08/fiddle_pipedream_sosp19.pdf


训练并行化是构建规模更大、更精确深度学习模型的关键挑战之一,也是深度学习社区中一个活跃的研究方向,需有效结合并发编程技术和深度学习模型的本质来达成目标。当前,深度学习开发人员要实现模型训练的并行化,初出茅庐的 GPipe 和 PipeDream 无疑是两种最具创造力的选项。


原文链接:


https://medium.com/dataseries/microsoft-and-google-open-sourced-these-frameworks-based-on-their-work-scaling-deep-learning-c0510e907038


2020-11-04 13:302615
用户头像
陈思 InfoQ编辑

发布了 584 篇内容, 共 309.6 次阅读, 收获喜欢 1306 次。

关注

评论

发布
暂无评论
发现更多内容

四份深入源码层面笔记,学完后让你彻底精通Spring Cloud!

Java架构追梦

Java 架构 面试 微服务 SpringCloud

什么是网络流量劫持?

网络安全学海

网络安全 安全 渗透测试 安全漏洞 网络攻防

[译] R8 优化: Switch 场景下的枚举

Antway

6月日更

“动态规划”这词太吓人,其实可以叫“状态缓存”

华为云开发者联盟

Java 动态规划 超时 dp数组 状态缓存

THOR:MindSpore 自研高阶优化器源码分析和实践应用

华为云开发者联盟

网络 mindspore THOR 高阶优化器 THOR算法

什么是NQI?质量基础设施“一站式”服务平台我来帮你搭建

源中瑞-龙先生

NQI 质量基础设施“一站式”

TDH8.0使用必读2: 10种数据模型全支持 未来属于多模型大数据平台

星环科技

Ubuntu 安装 NTP 服务

HoneyMoose

一分钟懂5G

俞凡

5G

模型化生存

俞凡

认知

星环科技边缘计算平台Sophon Edge通过EC Ready边缘服务权威评测!

星环科技

重磅!北京区域已经推出第三个可用区啦

亚马逊云科技 (Amazon Web Services)

Linux之touch命令

入门小站

Linux

zookeeper客户端zkclient和curator的api

赵镇

zookeeper

经典永流传,华为云媒体 AI 让老电影焕发新生

华为云开发者联盟

AI 云原生 音视频 电影修复 华为云媒体

拥抱数字娱乐家庭新生态,亚马逊云科技赋能智象“蛟龙出海” | 精选案例

亚马逊云科技 (Amazon Web Services)

Swarm云算力矿机分币系统搭建,chia矿机系统源码

JAVA原生线程池源码解析及使用建议( 程序员必看!)

Java 面试 BAT

NeoFetch - Linux 使用命令行查看系统信息

HoneyMoose

JavaScript学习(九)

空城机

JavaScript 大前端 6月日更

经典Android开发教程!腾讯T3团队整理,附小技巧

欢喜学安卓

android 程序员 面试 移动开发

在线html链接提取工具

入门小站

工具

带你认识Flink容错机制的两大方面:作业执行和守护进程

华为云开发者联盟

flink 守护进程 容错 作业执行 Flink 容错机制

肝到头秃!阿里爆款的顶配版Spring Security笔记

Java 程序员 架构 面试 计算机

🏆「作者推荐」【JVM原理探索】字节码指令集调用执行流程分析(语法分析篇)

码界西柚

JVM Class字节码 6月日更 字节码指令

华为云官网前端的技术演进与低代码实践

华为云开发者联盟

大前端 低代码 可视化 页面 华为云官网

公司给的期权有没有价值?

石云升

期权 职场经验 6月日更

华为自研PB级分布式时序数据库揭秘第一期:初识GaussDB(for Influx)

华为云数据库小助手

数据库 GaussDB(for Influx) 华为云数据库

云小课 | 华为云KYON:网段零修改上云,简单又好用

华为云开发者联盟

KYON企业级云网络 私网NAT网关 弹性负载均衡ELB 虚拟私有云VPC L2CG VPVEP

redis面试知识点和内存算法了解

收藏!阿里P9耗时28天,总结出来了“618、双十一”活动高并发系统设计手册

Java 程序员 架构 面试 高并发

微软和谷歌各自开源新的分布式深度学习训练框架_AI&大模型_Jesus Rodriguez_InfoQ精选文章