AICon 深圳站聚焦 Agent 技术、应用与生态,大咖分享实战干货 了解详情
写点什么

电影票房数据查询服务高性能与高可用实践

  • 2020-03-24
  • 本文字数:2498 字

    阅读完需:约 8 分钟

电影票房数据查询服务高性能与高可用实践

灯塔是阿里大文娱旗下一站式宣发平台,同时也是阿里巴巴为数不多对外提供数据的数据平台。作为数据平台,数据的时效性和准确性一直技术需要突破的重点和难点。

一、技术挑战

灯塔数据系统(前身淘票票专业版)从 2017 年开始建设,最开始采用 MYSQL 作为数据存储,基础数据定时计算写入数据库,经过 2 年多的建设,产品已经基本成形,但对于数据的实效性有了更高的要求,由于影院单日售票在 3000W 张,预售将近 1 亿张票,计算量大,写入频次高,从感知影院售票到客户端呈现数据,采用什么样的方案,什么样的技术,能够通过最小的改动让数据最快的呈现出来,成了技术考虑的难点。

二、技术策略

首先是缩小数据量,找出数据规律,实现数据的实时计算,各维度数据汇总如图:



(图片:灯塔专业版数据汇总关系图)


各维度数据在业务应用的场景中,均可以按照时间、地区、业务主键进行检索,根据这个特征,我们生成了天然的 Key 组合,时间、地区、业务主键,并排列组合出三种 Key:时间_地区_业务主键,时间_业务主键_地区,地区_业务主键_时间。按照以上三种 Key 组合,在已知任何两个条件的情况下,均能实现对业务数据的检索。此时我们已经锁定了数据的存储平台 HBase。剩下的就是如何改造系统实现实时化。

三、落地方法

数据源有了,MYSQL 和 HBase,HBase 是实时数据,MYSQL 是离线数据,为了让上层业务无感知,特在底层数据做处理,实现离线数据和实时数据的结合,数据处理流程如图:



(图片:灯塔专业版数据处理流程图)


用户在请求票房数据的时候,先根据业务开关,决定请求实时数据还是离线数据,离线数据直接请求 MYSQL。实时数据,优先查询缓存,若缓存存在且不过期,直接返回缓存数据。缓存数据失效的情况下,查询 HBase,重新写入缓存。


系统日常还是有上千的 QPS,为了防止缓存击穿,对数据源造成压力,需要对热数据进行缓存预热。由于数据的特殊性,T 日为最热数据,占到总流量的 80%以上,这时候,缓存预热成了承受高并发访问的关键。定时任务每秒将 T 日数据整体刷入缓存,防止缓存失效击穿(因为都是 key-valu 存储,后续考虑热数据直接写入缓存,直接替代预热方案)。其实为了防止击穿,这部分数据是 24 小时不过期的,数据的更新是依赖定时任务的,一但数据链路故障、HBase 故障或算法异常,只需要停止定时任务,就能暂时止血,给技术留出处理时间不至于故障升级。同时 HBase 做了主备链路,而且主链路和备用链路的的算法略有不同,保证主备链路不会同时出问题。这样的架构,对于应用而言,就有了 4 套不同的数据源做保证的。架构上线至今,数据未曾出现一次问题。而且无形中解决了高 QPS 的问题,数据的提供主要依靠 TAIR,而缓存应对 QPS 就显得简单的多了。



(图片:灯塔专业版数据源关系图)


系统的难点在于实时数据和离线数据的结合。数据结合共分为以下几类:


  1. T 日查询,非实时即离线,如查询今日大盘票房;系统首先定义了一个方法,根据日期判定数据应该查询实时还是查询离线,由于行业数据是按照 6 点到 6 点,即 T 日数据,在第二日 6 点后才变为离线数据,且由于专资办数据回刷的问题,防止数据回跳,会在数据回刷后才切换为离线数据。当查询单日数据时,针对查询日期,判定数据源,进行数据转换;

  2. 日期范围查询,即有实时又有离线,如查询影片每日票房情况;当查询日期范围时,由于日期范围时连续的,特将范围日期拆散成每一天,按照方法 1 中的判定规则,切分日期范围为离线日期和实时日期,然后数据源根究日期范围取最小日期和最大日期进行范围查询,查询后进行数据组合后返回数据;

  3. 范围统计,离线+实时,如本周票房;当进行范围统计查询时,首先去离线数据,然后根据日期判定,如果 T-1 数据还未回刷,则去 T-1 和 T 日数据,否则只去 T 日数据即可,将实时数据和离线数据进行加和,返回查询数据结果;

  4. 榜单查询,离线补实时,如影片榜单。榜单查询由于榜单数据范围不好确定,范围查询有可能查询数据太多,所以在查询排行榜时,先取离线数据 2 倍的数据量,然后根据离线数据返回业务主键,查询当前的实时数据,将实时数据覆盖到离线数据后,进行内存排序和截取,最终返回榜单数据。榜单数据略有不同,比如院线影片,由于全国院线一共 49 家,此时不做离线查询,直接查询所有实时数据进行排序。


针对以上数据整合的各种可能,参照以往出现的各种问题,封装代码如下:



(图片:示例代码 1)



(图片:示例代码 2)


通过以上处理,在上层业务无感知的情况下,下游数据实现了整体实时化的切换。而且通过 switch 开关控制针对数据源能够实现单业务主备切流,实时离线数据转换,使得数据的稳定性更可靠,为底层数据改造和升级留下了充足的扩展空间。


有了架构还不够,还需要感知能力,业务异常感知还是比较简单的,但是对于灯塔来说,有数不代表正常,数据到底对不对,这是问题感知的关键,这时候需要一个智能化的监控系统。针对票房数据,在不改造代码的情况下,我们设计了一个切面,引入脚本代码,针对特定数据来源做数据动态处理,将返回数据整合在一起,并提取出来,通过算法识别票房数据行为趋势,如图:



(图片:灯塔专业版票房监测趋势图)


针对数据的趋势做智能化监控,当数据异常变化或者超过业务限定范围,就会通知告警,以此来有效的规避数据异常的情况,并能及时感知问题。

四、总结沉淀

随着 B 端业务的发展,数据的作用越来越大,在海量数据存储和更新的需要下,关系型数据库已经越来越无力,各种类型的数据存储起到了不同的作用,多数据源的整合也越来越重要。本文介绍了灯塔为了做到实时的数据系统,是如何组合 Mysql、Hbase、Tair 三个数据源来实现高写入,高并发、高可靠的数据系统,希望能给后续更多的业务系统提供参考和指导。


作者介绍


阿里大文娱高级开发工程师 奋氛


相关阅读


电影垂直行业的云智开放平台如何炼成?


阿里工程师带你了解 B 端垂类营销中心如何设计?


云智前端技术如何赋能场馆院线?


60 秒售出 5 万张票!电影节抢票技术揭秘


电影行业提升 DCP 传输效率,还能这样做!


超大型场馆的绘座选座解决方案


大型赛事稳定性保障:Dpath 为世界军人运动会护航


世界顶级赛事的票务支撑:百万座位与限时匹配


前端技术:Webpack 工程化最佳实践


2020-03-24 10:001381

评论

发布
暂无评论
发现更多内容

Linux之用户管理、权限管理、程序安装卸载

C++后台开发

Linux 后端开发 linux开发 Linux服务器开发 C++开发

5分钟实现「视频检索」:基于内容理解,无需任何标签

Zilliz

人工智能 Towhee 视频检索

如何通过 NFTScan 浏览器捕获 NFT 投资机会

NFT Research

区块链 NFT 数据基础设施

埃森哲发布《2022中国企业数字化转型指数》,如何通过自动化工具打造技术底座

飞算JavaAI开发助手

十分钟带你全面解析Promise、generator、async类同步编程!

好程序员IT教育

JavaScript Promise

Spring Bean的生命周期(详细解读)

千锋IT教育

mysql经典面试题

@下一站

MySQL 编程 dba 11月月更

《大厂面试》之JVM篇21问与答

钟奕礼

Java java程序员 java面试 java编程

开源共建 | Dinky 扩展批流统一数据集成框架 ChunJun 的实践分享

袋鼠云数栈

Wallys/ industrial mini pcie card/2x 2 5G /High power Radio card

Cindy-wallys

QCA9882 2x 2 5G high power

Apisix网关快速入门实践

IT巅峰技术

调用链路上千条,如何观测 Nacos 的运行状态

阿里巴巴云原生

阿里云 微服务 云原生 naocs

2022年10月视频用户洞察:卡塔尔世界杯揭幕,全民体育盛宴开启

易观分析

视频 世界杯

谁能破解客户数字化困局?

ToB行业头条

磁盘占用高问题如何排查?三步教你搞定

OceanBase 数据库

快围观!助力 TDesign 无障碍改造活动来了!

TDesign

无障碍

让 Serverless 更普惠,阿里云函数计算 FC 宣布全面降价,最大幅度达 37.5%

Serverless Devs

阿里云 Serverless

如何做好成熟完整的企业团队知识管理?

Baklib

团队管理 知识管理

Baklib知识分享 | 搭建企业在线帮助中心的最佳攻略

Baklib

日志异常检测准确率低?一文掌握日志指标序列分类

云智慧AIOps社区

深度学习 日志分析 时间序列 指标预测 日志异常

【案例】数字化浪潮中,云科通明湖如何助力能源行业弯道超车?

通明湖

负载均衡

深度解读|NebulaGraph x 阿里云计算巢,云上构建超大规模图数据库

阿里云弹性计算

图数据库 计算巢

PHP反序列化漏洞解析

网络安全学海

网络安全 安全 信息安全 渗透测试 漏洞挖掘

Wallys/DR7915/MT7915/MT7975/industrial mini pcie card 2T2R

Cindy-wallys

MT7915 MT7975 / 2.4G&5G

银行APP用户体验外滩峰会圆满落幕!易观分析赋能用户体验体系,助力体验提升

易观分析

App 银行 易观

FAQ是什么?该如何编辑FAQ?

Baklib

深度学习 | 如何开发、部署 Serverless 应用?

阿里巴巴云原生

阿里云 Serverless 云原生

Redis 持久化机制演进与百度智能云的实践

Baidu AICLOUD

数据库 Redis内核

适合小白Web前端入门JS基础知识梳理汇总

千锋IT教育

为什么你的敏捷总是不成功?

敏捷开发

【计算讲谈社】第十二讲|数据中心那些事儿

大咖说

数据中心 碳中和

电影票房数据查询服务高性能与高可用实践_文化 & 方法_阿里巴巴文娱技术_InfoQ精选文章