限时!亚马逊云科技云从业者认证考试五折,未过免费补考!更有好礼相送! 了解详情
写点什么

60 秒售出 5 万张票!电影节抢票技术揭秘

  • 2020-03-18
  • 本文字数:3072 字

    阅读完需:约 10 分钟

60 秒售出 5 万张票!电影节抢票技术揭秘

一、背景介绍

对于电影爱好者来说,每次的电影节、影展活动,都是抢票大战的开启,出票速度几乎可以用“秒空”来形容,例如上海国际电影节线上开售的记录是 60 秒售出 5 万张。


本文主要围绕售票环节,讲述阿里文娱的云智系统是如何支撑高流量并发,保障系统的稳定,不出现重卖等实现方案背后的技术。


先简单分析一下电影节的抢票业务,典型特征是在大流量抢购、高并发的场景下,让用户极快的锁定座位然后出票,特别是热门的影片,会异常的火爆。第一道压力是查询已售座位列表和锁座,需要能快速的支撑用户的锁座请求,且实时查询到已售卖的座位列表,避免发起无效的锁座请求;第二道压力是出票,如果锁座成功,但一直出票失败,会给用户带来很不好的体验。

二、架构设计思考的方向

1.让业务赢


在分层设计上,分成渠道接入层、业务层和服务层。在业务层,对外业务和管理后台功能独立,职责清晰,快速支撑业务;服务层沉淀基础服务,构成稳定的业务和基础服务。



(图 1 业务技术大图)


2.让系统稳定


在架构设计上,接入统一网关让系统安全,有限流,对库存中心和订单中心进行数据隔离,且加入多级缓存方案,让系统稳定。



(图 2 技术架构图)

三、实现方案与技术解析

1.高并发流量如何抗?


电影节的流量是非常典型的秒杀场景,瞬时流量非常高,对于系统的高性能要求就注定很高,在云智中,我们是如何抗高并发流量的?我们通过以下三点来进行阐述:热点数据隔离、流量削峰漏斗、多级缓存。


1)热点数据隔离


在热点隔离这块,云智选择的策略包括:数据隔离和业务隔离。


数据隔离:是把查询已售卖座位和已锁定座位等库存相关的热点数据,隔离出来,单独业务数据库,且使用分库分表,减少系统性能压力,提高吞吐量。


业务隔离:电影节的业务数据,独立的业务数据生成能力,圈定参与活动的业务数据,进行缓存预热,起到隔离的效果。


2)流量削峰漏斗


关键词是“分层削峰”,漏斗式的减少请求流量,在业务链路的过程中,我们会进行业务校验,层层过滤,如用户的账号安全、购买资格,影院、影厅等基础信息状态是否正常,要购买的商品信息状态是否正常、秒杀是否已经结束等,每个层次都尽可能的过滤掉非法的请求,只在最后端处理真正有效的请求,最终减少请求到数据库 DB 的写操作流量,保证系统处理真正有效的请求。


以锁座流程为例子:



(图 3 流量削峰漏斗示例图)


3)多级缓存


在分层漏斗的前提下,云智采用分布式缓存和本地缓存 LocalCache 多级缓存的方案来抵抗高并发流量,以下简要介绍一下在系统中使用的策略:


a)缓存预热。在指定参加活动的场次后,会在限定时间内停止变更,在开售前,会自动进行预热缓存,避免激增流量击穿缓存;


b)缓存失效时长控制,对基础数据实体的 VO 对象和 DO 对象采用失效时间长短的缓存控制,静态数据和 DO 实体使用长失效时长的策略:不失效或 24H;动态数据和实体 Info 使用比较短的失效时长策略:分钟级,比如幂等性 KEY 的缓存时间为 2min;


c)本地缓存 LocalCache 使用的缓存时长策略分 3 种:2s,60s,122s。优先读本地的缓存,其次读远程分布式的缓存,使得系统可以抵抗瞬间的高并发流量。


示例图如下所示:



(图 4 多级缓存示例图)


将缓存分 2 层结构:


第一层是本地缓存结构:用户、权限、基础信息等静态数据,我们优先选择本地缓存;


第二层是全量的缓存实体信息的 DO 和 VO 信息,这层采用的是 Tair 分布式缓存。


2.系统的稳定性、高可用性如何保证?


对于任何档期或者活动,系统的稳定性都是第一要素,针对电影节的活动场景,我们使用了很多设计上的稳定性模式,其中比较核心的有:多轮全链路压测、限流、降级、动态扩容、流量调度、减少单点、依赖简化等方式;除了以上几点,本节我们重点聊一聊我们在电影节过程中是如何保障备战的?


1)保障备战体系



(图 5 保障备战体系图)


a)在战前阶段


这个阶段的工作会比较多,只有做到事前充分准备,才能有更好的保障结果,主要包括以下几个部分:


(1)梳理薄弱点,包括系统架构、系统薄弱点、核心主流程,识别出来后制定应对策略;


(2)全链路压测,对系统进行全链路压测,找出系统可以承载的最大 QPS;


(3)限流配置,为系统配置安全的、符合业务需求的限流阀值;


(4)应急预案,收集各个域的可能风险点,制作应急处理方案;


(5)安全保障,主要聚焦在账号权限管控,以最小够用原则为准,防止权限滥用,安全无小事;


(6)战前演练,通过演练来检验保障体系是否完善,演练开票现场,提高团队响应和处理能力;


(7)作战手册,制定作战手册,明确作战流程和关键点节点的任务以及沟通机制。


b)在战中阶段


活动开售,我们也称为战中,整个项目组主要专注三件事情,即“监控”、“响应”和“记录”。项目组的同学都必须要保持作战状态,严格按照应用 owner 机制,负责巡检应用情况,及时同步技术数据和业务数据是否有异常。同时,在战中,我们临时组建“保障虚拟小组”,用于应对大促期间可能出现的紧急客诉等问题,及时做出决策,控制影响范围,同时也能提高整体作战能力。记录,是在战中过程中必须要记录下各应用的峰值,及时沉淀技术数据,为后续系统建设,流量评估等提供参考借鉴。


c)在战后阶段


这个阶段的主要工作是项目复盘,复盘的内容主要包括:项目结果、项目回顾、项目沉淀和改进,将项目过程中收集到的问题和故障进行详细分析,并将项目过程中沉淀出来的,关于系统稳定性保障的经验沉淀到日常,让活动保障的常态化逐步落地。


2)最佳实践


a)精准监控


通过监控,实时发现各个服务是否触发限流值,及时进行 Review,调整限流值,保证业务成功率和系统稳定。


对系统基础值班和业务量指标进行精准监控,如 load,内存,PV,UV,错误量等,避免因内存泄露或代码的 Bug 对系统产生影响,精准监控,提前感知内存泄露等问题。


b)数据大盘


通过数据大盘,实时汇总数据,展示业务数据,为系统、为业务提供更加直观的业务支持,也可以更加有效的进行业务备战


3.如何保证不出现重卖?


在业务过程中,我们实现了很多业务,解决了很多困难,我们重点阐述以下两个痛点,一个是恶意锁座,一个是防止超卖。


1)如何解决恶意锁座?


首先我们采用的扣减库存方式是预扣库存,用户操作锁定座位时即锁定库存,那我们如何解决恶意锁座呢?


a)锁座订单中会生成一个“库存失效时间”,超过该时间,锁座订单会失效释放库存;


b)限制用户购买数量,一人最多只能购买 6 张票;


c)接入黄牛防控系统。


2)如何防止库存超卖?


电影票不同于电商业务普通的标品,是不允许出现超卖的情况,否则会出现重票,从而引发客诉舆论问题,所以在库存数据一致性上,需要保障在高并发情况下不出现重票,我们的解决方案是:


a)使用分布式缓存,在分布式缓存中预减库存,减少数据库访问;


b)使用数据库唯一键,在锁座表中,设定场次 Id 和座位 Id 做为唯一键。锁定座位时,如果座位已经售卖,会报出数据库异常,不允许某一个座位重复售卖。

四、总结

回顾电影节抢票,我们首先想到的是能抗高并发流量,能让系统稳定。通过上述章节我们揭开了高性能、高可用等背后的技术,展示了一个典型抢票大战的技术方案,核心技术包括:


  • 让业务赢 = 完整的业务应用 + 支撑核心业务;

  • 高性能、高可用 = 流量削峰 + 限流降级 + 多级缓存;

  • 平台成熟化 = 完善的监控 + 保障方案。


在这个过程中,我们沿着让系统稳定、让业务赢的设计思想,不断的思考和落地这些技术细节,沉淀核心技术,以达到让用户体验流畅的抢票过程。电影行业提升 DCP 传输效率,还能这样做!


作者介绍


阿里文娱高级开发工程师 念贤


相关阅读


电影垂直行业的云智开放平台如何炼成?


阿里工程师带你了解 B 端垂类营销中心如何设计?


云智前端技术如何赋能场馆院线?


2020-03-18 10:001351

评论

发布
暂无评论
发现更多内容

五大要点,让你掌握代码整洁之道!

SoFlu软件机器人

案例 | 在肯尼亚,青年们正在说着“Sheng”语...

澳鹏Appen

人工智能 nlp 数据标注 训练数据 小语种

软件测试 | 流程管理平台

测吧(北京)科技有限公司

测试

“采访”ChatGPT看看它对我们GreatSQL社区有什么看法

GreatSQL

MySQL greatsql greatsql社区

4道数学题,求出极狐GitLab CI 流水线之最优解|第1题:有向无环图流水线

极狐GitLab

ci DevOps cicd pipeline 极狐GitLab

直播预告 | 数据库自治平台 KAP 监控告警架构及实例演示

KaiwuDB

监控告警 KaiwuDB 数据库自治

软件测试 | 项目管理与跨部门沟通协作

测吧(北京)科技有限公司

测试

智商狂飙,问了ChatGPT几个数据库问题后,我的眼镜掉了

NineData

人工智能 MySQL 数据库 ChatGPT NineData

2023年最新互联网大厂精选Java面试真题集锦(JVM、多线程、MQ、MyBatis、MySQL、Redis、微服务、分布式、ES、设计模式)

架构师之道

编程 程序员 计算机 java面试

分布式缓存服务DCS:企业版性能更强,稳定性更高

华为云开发者联盟

云计算 后端 华为云 企业号 2 月 PK 榜 华为云开发者联盟

区块链项目开发技术团队源码交付

开发微hkkf5566

有了 ETL 数据神器 dbt,表数据秒变 NebulaGraph 中的图数据

NebulaGraph

数据库 大数据 数据处理 图数据库

高级java体系课第1期第二周作业

刘博

渲染行业需要什么,云渲染的优势是什么?

Renderbus瑞云渲染农场

云渲染 云渲染农场 云渲染平台

全景剖析阿里云容器网络数据链路(四):Terway IPVLAN+EBPF

阿里巴巴云原生

阿里云 容器 云原生

明道云致几位重度抄袭者的公开信

明道云

设计模式-策略模式详解

C++后台开发

设计模式 策略模式 后端开发 Linux服务器开发 C++开发

银斯微, W-Sharing取得TTA与PaaS-TA兼容级别1双项认证

科技热闻

陕西旅游集团旗下景区春节期间累计接待超200万人次,这背后也有火山引擎VeDI的身影

字节跳动数据平台

大数据 数据中台 字节跳动 数据产品

如何通过Java应用程序将OpenDocument 演示文稿(.odp)转换为PDF

在下毛毛雨

Java PDF 转换格式 ODP文档

软件测试 | 常用测试管理平台

测吧(北京)科技有限公司

测试

什么是智能制造,为什么它对传统制造业影响如此之大?

PreMaint

智能工厂 智能制造

关于小游戏引擎你还了解哪些?

没有用户名丶

小程序游戏

从 await-to-js 到 try-run-js

jump-jump

JavaScript 异步 优化 Async 重试

软件测试 | 软件测试体系

测吧(北京)科技有限公司

测试

Flink SQL 在米哈游的平台建设和应用实践

Apache Flink

大数据 flink 实时计算

大规模敏捷测试怎么做?--基础篇

QE_LAB

敏捷测试

软件测试 | 测试流程体系

测吧(北京)科技有限公司

测试

java培训学习怎么选择

小谷哥

Apifox 1 月更新 | 将接口调试做到「极简」的新模式上线

Apifox

Apifox API

VSCode一键接入Notebook体验算法套件快速完成水表读数

华为云开发者联盟

人工智能 华为云 企业号 2 月 PK 榜 华为云开发者联盟

60 秒售出 5 万张票!电影节抢票技术揭秘_文化 & 方法_阿里巴巴文娱技术_InfoQ精选文章