写点什么

哈佛大学联合 MIT 研究人员发布了 Clevrer 数据集,以推进视觉推理和神经符号 AI 的发展

  • 2020-06-08
  • 本文字数:1705 字

    阅读完需:约 6 分钟

哈佛大学联合MIT研究人员发布了Clevrer数据集,以推进视觉推理和神经符号AI的发展

近日,哈佛大学和麻省理工学院沃森 AI 实验室的研究人员发布了 Clevrer 数据集,用于评估 AI 模型识别因果关系和进行推理的视频诊断数据集。麻省理工学院 IBM 沃森实验室负责人大卫·考克斯 (David Cox) 称, Clevrer 数据集可以在创造混合 AI 方面取得进展,混合 AI 是指结合了神经网络和符号 AI 的混合型 AI。IBM 研究团队负责人达里奥·吉尔 (Dario Gil) 亦将神经符号 AI 列为 2020 年最重要的进展之一。


Clevrer 是一个诊断视频数据集,用于系统评估各种推理任务上的计算模型。近期,在全数字化的国际表征学习会议 (ICLR) 上发表的一篇论文中,介绍了有关视频表征与推理 (Clevrer) 数据集碰撞事件的初步研究成果。


Clevrer 建立在 Clevr 基础之上。Clevr 是斯坦福大学 (Stanford University) 和 Facebook AI 研究团团队 (Facebook AI Research)于 2016 年发布的一组数据集,用来分析神经网络的视觉推理能力。该团队成员包括大名鼎鼎的 ImageNet 创始人李飞飞 (Fei Fei Li) 博士。在国际表征学习会议 (ICLR) 上,Clevrer 的共同创作者例如来自麻省理工学院-IBM 沃森实验室 (MIT-IBM Watson Lab) 的庄根和来自 Deepmind 的普希梅特·科利 (Pushmeet Kohli) 等人对神经符号概念 NS-DR (Neuro Symbolic Concept Learner,NS-DR),一种应用于 Clevr 的神经符号学模型做了介绍。


该论文写道:“我们对视频的时间和因果推理进行了系统性的研究。视频的时间和因果推理这个问题非常深刻且具有挑战性,它困扰研究人员很久了,但我们才刚刚开始用‘现代化的’ AI 工具来对它进行研究。”“我们新开发的 Clevrer 数据集和 NS-DR 模型即是朝这个研究方向进行的初步探索。”


Clevrer 数据集由 Bullet 物理模拟器制作,包括 2 万部展示桌面上物体碰撞的合成视频和一组自然语言数据集,其中包括与视频内物体相关的问题和答案。总共有超过 30 万个这样的问题和答案,它们被分为描述性、解释性、预测性和反事实性等类别。


麻省理工学院-IBM 沃森实验室负责人大卫·考克斯 (David Cox) 在一次采访中向 媒体透露,他坚信 Clevrer 数据集将有助于创造混合 AI,混合 AI 结合了神经网络和符号 AI。考克斯表示,IBM 研究团队 (IBM Research) 将把该方法应用于 IT 基础设施管理和工厂、建筑工地等工业环境。


考克斯称:“我认为这个数据集对几乎所有类型的应用都很重要。“通过该数据集,我们可以将世界简单化为许多到处移动的球,这也正是观察世界、了解世界、以及做计划并改变世界的第一步。因此,我们认为这个数据集的应用或将横跨多个领域,而视觉和机器人技术则是很好的开始。”


麻省理工学院-IBM 沃森 AI 实验室成立于三年前,旨在取得与广义 AI 主题相关的颠覆性进展。该实验室如 ObjectNet 等一些成果凸显了 ImageNet 之类的深度学习成功案例相对薄弱,所以该实验室已把重心转向了神经网络和符号或经典 AI 的结合上。


符号 AI 和神经网络一样,已经存在了几十年之久。考克斯认为,神经网络在等待着合适的条件出现,如足够多的数据和足够多的计算符号,与此同时 AI 也在等待着神经网络的发展,以便再度复苏。


考克斯说,这两种 AI 的互补性很好,如果能够结合,我们便可以用更少的数据和更高的效能来打造更稳健和更可靠的模型。在年初与 VentureBeat 的一次访谈中,IBM 研究团队负责人达里奥·吉尔 (Dario Gil) 称神经符号 AI 将成为 2020 年最重要的进展之一。


考克斯说,不论你想得到什么结果,通过神经符号 AI,你都可以表征知识或程序,而不是像神经网络那样映射输入和输出。因此,这或许能够使 AI 更好地帮助我们解决现实世界的问题。


考克斯称,“谷歌有一条数据之河,亚马逊也有,这些都不是坏事,但我们绝大多数的问题更像是智力游戏,所以我们认为,要向前发展,真正让 AI 不再是概念上的炒作,我们需要建立能够实现这一点的系统,这些系统有逻辑组件,可以能够灵活地重新配置自己,可以根据环境和实验采取行动,可以解释这些信息,并拥有其认知世界的内在心理模型”。


麻省理工学院-IBM 沃森 AI 联合实验室成立于 2017 年,总投资 2.4 亿美元。


原文链接:


https://venturebeat.com/2020/04/28/mit-researchers-release-clevrer-to-advance-visual-reasoning-and-neurosymbolic-ai/


2020-06-08 10:281446
用户头像
李冬梅 加V:busulishang4668

发布了 979 篇内容, 共 581.3 次阅读, 收获喜欢 1131 次。

关注

评论

发布
暂无评论
发现更多内容

全国首张数字人民币保单成功出单

CECBC

数字人民币保单

花火交易所系统开发|花火交易所软件APP开发

系统开发

函数进阶· 第3篇《常用内置函数filter()、map()、zip(),怎么用的呢?》

清菡软件测试

测试开发

90%的程序员,都没用过多线程和锁,怎么成为架构师?

小傅哥

程序员 小傅哥 线程池 架构师 七日更

世界之书:《一个人的朝圣》与重归信仰

lidaobing

一个人的朝圣 28天写作

【数据结构与算法】分析时间复杂度与空间复杂度

三钻

数据结构与算法

金瓯无缺江河一统|Win10系统基于Docker和Python3搭建并维护统一认证系统OpenLdap

刘悦的技术博客

Python TCP ldap openldap 统一管理

Javascript | 模拟mvc实现点餐程序

LiOnTalKING

Java mvc 大前端 H5

第六周技术选型作业-CAP原理概述

Geek_michael

极客大学架构师训练营

MySQL用户与权限管理指南

Simon

MySQL 用户权限 七日更

音乐后期处理:音乐失真效果制作

懒得勤快

音乐制作 编曲 编曲宿主 mid 音乐后期

计算存储分离在消息队列上的应用

京东科技开发者

大数据 云原生 中间件 消息中间件

合约交易系统开发软件定制

简析5G时代的MART流处理

VoltDB

数据库 5G

Docker终端无法输入中文问题解决

Simon

Docker 七日更

阿里高工手码”537页Spring源码速成手册“3天直接带你飙向实战

比伯

Java 编程 架构 面试 计算机

执子之手,与子长安:探秘华为运动健康实验室

脑极体

甲方日常 73

句子

工作 随笔杂谈 日常

支持百万级TPS,Kafka是怎么做到的?

爱笑的架构师

kafka Kafka知识点 零拷贝 Mmap 七日更

生产环境全链路压测建设历程 19:某快递 A 股上市公司的生产压测案例之下篇

数列科技杨德华

全链路压测 七日更

后端缓存代码实践

Albert

缓存击穿 七日更

第五课技术选型作业

Geek_michael

极客大学架构师训练营

盘点2020 | 所思、所遇、所学、所悟

三钻

程序员 大前端 盘点2020

数字之暖:鹅厂云原生的“新路”与“历承”

脑极体

永续合约交易系统开发模式定制

什么样的企业才需要用到云服务器?

德胜网络-阳

新思科技:2021年软件安全行业六大趋势预测

InfoQ_434670063458

分布式缓存架构

raox

极客大学架构师训练营

TypeScript | 第四章:命名空间和模块

梁龙先森

typescript 大前端 七日更

有效破解行业难点 专家称区块链+医疗发展还需找准应用场景

CECBC

区块链 大数据 医疗

甲方日常 74

句子

工作 随笔杂谈 日常

哈佛大学联合MIT研究人员发布了Clevrer数据集,以推进视觉推理和神经符号AI的发展_文化 & 方法_KHARI JOHNSON_InfoQ精选文章