写点什么

哈佛大学联合 MIT 研究人员发布了 Clevrer 数据集,以推进视觉推理和神经符号 AI 的发展

  • 2020-06-08
  • 本文字数:1705 字

    阅读完需:约 6 分钟

哈佛大学联合MIT研究人员发布了Clevrer数据集,以推进视觉推理和神经符号AI的发展

近日,哈佛大学和麻省理工学院沃森 AI 实验室的研究人员发布了 Clevrer 数据集,用于评估 AI 模型识别因果关系和进行推理的视频诊断数据集。麻省理工学院 IBM 沃森实验室负责人大卫·考克斯 (David Cox) 称, Clevrer 数据集可以在创造混合 AI 方面取得进展,混合 AI 是指结合了神经网络和符号 AI 的混合型 AI。IBM 研究团队负责人达里奥·吉尔 (Dario Gil) 亦将神经符号 AI 列为 2020 年最重要的进展之一。


Clevrer 是一个诊断视频数据集,用于系统评估各种推理任务上的计算模型。近期,在全数字化的国际表征学习会议 (ICLR) 上发表的一篇论文中,介绍了有关视频表征与推理 (Clevrer) 数据集碰撞事件的初步研究成果。


Clevrer 建立在 Clevr 基础之上。Clevr 是斯坦福大学 (Stanford University) 和 Facebook AI 研究团团队 (Facebook AI Research)于 2016 年发布的一组数据集,用来分析神经网络的视觉推理能力。该团队成员包括大名鼎鼎的 ImageNet 创始人李飞飞 (Fei Fei Li) 博士。在国际表征学习会议 (ICLR) 上,Clevrer 的共同创作者例如来自麻省理工学院-IBM 沃森实验室 (MIT-IBM Watson Lab) 的庄根和来自 Deepmind 的普希梅特·科利 (Pushmeet Kohli) 等人对神经符号概念 NS-DR (Neuro Symbolic Concept Learner,NS-DR),一种应用于 Clevr 的神经符号学模型做了介绍。


该论文写道:“我们对视频的时间和因果推理进行了系统性的研究。视频的时间和因果推理这个问题非常深刻且具有挑战性,它困扰研究人员很久了,但我们才刚刚开始用‘现代化的’ AI 工具来对它进行研究。”“我们新开发的 Clevrer 数据集和 NS-DR 模型即是朝这个研究方向进行的初步探索。”


Clevrer 数据集由 Bullet 物理模拟器制作,包括 2 万部展示桌面上物体碰撞的合成视频和一组自然语言数据集,其中包括与视频内物体相关的问题和答案。总共有超过 30 万个这样的问题和答案,它们被分为描述性、解释性、预测性和反事实性等类别。


麻省理工学院-IBM 沃森实验室负责人大卫·考克斯 (David Cox) 在一次采访中向 媒体透露,他坚信 Clevrer 数据集将有助于创造混合 AI,混合 AI 结合了神经网络和符号 AI。考克斯表示,IBM 研究团队 (IBM Research) 将把该方法应用于 IT 基础设施管理和工厂、建筑工地等工业环境。


考克斯称:“我认为这个数据集对几乎所有类型的应用都很重要。“通过该数据集,我们可以将世界简单化为许多到处移动的球,这也正是观察世界、了解世界、以及做计划并改变世界的第一步。因此,我们认为这个数据集的应用或将横跨多个领域,而视觉和机器人技术则是很好的开始。”


麻省理工学院-IBM 沃森 AI 实验室成立于三年前,旨在取得与广义 AI 主题相关的颠覆性进展。该实验室如 ObjectNet 等一些成果凸显了 ImageNet 之类的深度学习成功案例相对薄弱,所以该实验室已把重心转向了神经网络和符号或经典 AI 的结合上。


符号 AI 和神经网络一样,已经存在了几十年之久。考克斯认为,神经网络在等待着合适的条件出现,如足够多的数据和足够多的计算符号,与此同时 AI 也在等待着神经网络的发展,以便再度复苏。


考克斯说,这两种 AI 的互补性很好,如果能够结合,我们便可以用更少的数据和更高的效能来打造更稳健和更可靠的模型。在年初与 VentureBeat 的一次访谈中,IBM 研究团队负责人达里奥·吉尔 (Dario Gil) 称神经符号 AI 将成为 2020 年最重要的进展之一。


考克斯说,不论你想得到什么结果,通过神经符号 AI,你都可以表征知识或程序,而不是像神经网络那样映射输入和输出。因此,这或许能够使 AI 更好地帮助我们解决现实世界的问题。


考克斯称,“谷歌有一条数据之河,亚马逊也有,这些都不是坏事,但我们绝大多数的问题更像是智力游戏,所以我们认为,要向前发展,真正让 AI 不再是概念上的炒作,我们需要建立能够实现这一点的系统,这些系统有逻辑组件,可以能够灵活地重新配置自己,可以根据环境和实验采取行动,可以解释这些信息,并拥有其认知世界的内在心理模型”。


麻省理工学院-IBM 沃森 AI 联合实验室成立于 2017 年,总投资 2.4 亿美元。


原文链接:


https://venturebeat.com/2020/04/28/mit-researchers-release-clevrer-to-advance-visual-reasoning-and-neurosymbolic-ai/


2020-06-08 10:281450
用户头像
李冬梅 加V:busulishang4668

发布了 983 篇内容, 共 587.8 次阅读, 收获喜欢 1143 次。

关注

评论

发布
暂无评论
发现更多内容

与信创国产化高度适配的低代码开发框架

力软低代码开发平台

响应式编程——初识 Flux 和 Mono

emanjusaka

Java 响应式编程 后端

互助系统源码|USDT众筹理财系统模型搭建开发

V\TG【ch3nguang】

USDT承兑支付系统开发 理财系统

MatrixOne内核1.0.0-RC1版本正式发布啦!

MatrixOrigin

数据库 云原生 MatrixOrigin MatrixOne 矩阵起源

NFTScan 正式上线 Base NFTScan 浏览器和 NFT API 数据服务

NFT Research

NFT\

Alfred 5 for Mac(Mac应用快速启动器) v5.1.2(2145)中文激活版

mac

Alfred 苹果mac Windows软件 快速启动工具

Node与Express后端架构:高性能的Web应用服务

互联网工科生

Web Node Express

共创共赢,天翼云携手用友打造商业创新一体化解决方案!

天翼云开发者社区

云计算 AI 数据治理

BackupLoupe for Mac(数据还原备份工具)v3.9中文版

mac

苹果mac Windows软件 数据备份工具

突破连接壁垒,火山引擎边缘云网络的先行之路

火山引擎边缘云

云服务边缘架构 边缘云 边缘云原生

HarmonyOS Codelab 优秀样例——购物应用,体验一次开发多端部署魅力

HarmonyOS开发者

HarmonyOS

服务网格实施周期缩短 50%,丽迅物流基于阿里云 ACK 和 ASM 的云原生应用管理实践

阿里巴巴云原生

阿里云 云原生 服务网格 容器服务

低代码平台:IT开发的一种重要方式

树上有只程序猿

系统开发 低代码开发 JNPF 传统开发

IPQ6010 with QCN9074 Solution|5G and Wi-Fi 6: A Dynamic Duo for the Connected Future

wallyslilly

IPQ6010 QCN9074

GaussDB技术解读系列:高安全之密态等值

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 8 月 PK 榜

合约一键跟单软件开发,币安欧意交易所合约跟单API量化机器人搭建

V\TG【ch3nguang】

量化交易机器人开发 合约跟单 币安智能链

科兴未来 | 2023年SCIP绿色化学化工创新创业大赛!

科兴未来News

软件测试/测试开发丨Web自动化测试策略

测试人

Python 程序员 软件测试 自动化测试 测试开发

生产制造关键业务模型拆解与平台化演进

华为云开发者联盟

后端 物联网 华为云 华为云开发者联盟 企业号 8 月 PK 榜

鹏云块存储在多副本情况下,如何兼顾数据一致性和效率?

鹏云网络

分布式系统 数据强一致性 副本一致性 分布式存储,

2023-08-28:用go语言编写。给你一个正整数数组nums, 同时给你一个长度为 m 的整数数组 queries。 第 i 个查询中,你需要将 nums 中所有元素变成 queries[i] 。

福大大架构师每日一题

福大大架构师每日一题

区块链上增发代币发行合约系统搭建开发

V\TG【ch3nguang】

智能合约 代币

移动应用高级语言开发——并发探索

OpenHarmony开发者

OpenHarmony

互助公排模式系统功能及矩阵开发设计

V\TG【ch3nguang】

互助 公排模式

低代码助力加速构建应用程序

高端章鱼哥

低代码开发 应用程序 JNPF

数字藏品交易平台App开发,数字藏品系统源码搭建

V\TG【ch3nguang】

数字藏品开发 数字藏品app

哈佛大学联合MIT研究人员发布了Clevrer数据集,以推进视觉推理和神经符号AI的发展_文化 & 方法_KHARI JOHNSON_InfoQ精选文章