写点什么

Amazon Connect 和 Amazon Lex 集成

  • 2019-11-12
  • 本文字数:2763 字

    阅读完需:约 9 分钟

Amazon ConnectAmazon Lex 这两项我最喜欢的服务最近推出了一些增强功能,我非常高兴有机会与大家分享这些功能。Amazon Connect 是一项基于云的自助式联络中心服务,可使任何企业能够轻松地以更低成本提供更优质的客户服务。Amazon Lex 是一项使用语音和文本构建对话界面的服务。通过将这两项服务相集成,您可以利用 Lex 的自动语音识别 (ASR) 和自然语言处理 (NLU) 功能为客户打造自助式体验。为了做到这一点,Amazon Lex 团队创建了新的深度学习模型,专门用来识别 8kHz 音频样本中的呼叫中心对话,稍后我将对此进行详细介绍。如果自动程序可以处理 90% 的客户请求,则客户等待时间将会减少,从而有更多时间来使用您的产品。


如需 Amazon ConnectAmazon Lex 的更多背景信息,我强烈建议您阅读 Jeff 之前发布的有关这两项服务的帖子 [1][2] (尤其是在您喜欢 LEGO 的情况下)。



接下来,我将向您展示如何使用这项新集成。大家也许知道,我喜欢在自己的 Twitch 频道上试用这些服务。我会选择一款我们针对 Twitch 频道构建的应用程序,然后针对博客进行修改。在这款应用程序的核心,用户拨打 Amazon Connect 号码后,随即会出现一系列“连锁反应”:将用户连接到 Amazon Lex 自动程序,自动程序调用 AWS Lambda 函数,而函数随后执行一组操作。


我们的应用程序有什么作用呢?我想最终解决哪个代码编辑器最为出色这个问题:我钟爱 Vim,这是一款超赞的编辑器,它的代码编辑功能非常棒 (堪称最好的编辑器)。我的同事 Jeff 偏爱 Emacs,它是一款强大的 操作系统编辑器…如果您的手指头足够灵活的话。另一名同事 Tara 习惯用 Visual Studio 和 Sublime。究竟哪个才是最佳编辑器?无需为此纠结,我想还是让诸位亲爱的读者来投票吧,不要担心您甚至可以为 butterflies投票。


对投票感兴趣?请拨打 +1 614-569-4019,告诉我们您要为哪款编辑器投票!我们不会存储您的号码,也不记录您的语音,尽管放心投票吧,您可为 Vim 多次投票。想看投票的直播吗? http://best-editor-ever.s3-website-us-east-1.amazonaws.com


现在,我们该如何进行巧妙设计呢?

Amazon Lex

我们先看看 Lex 方面的相关设计吧。创建一个名为 VoteEditor 的自动程序,它具有单个目的 VoteEditor、名为 editorConnectToAgent的单个槽。我们会将编辑器槽填满不同``的代码编辑器名称 (或许不会考虑 Emacs)。


AWS Lambda

我们的 Lambda 函数也非常简单。先创建一个Amazon DynamoDB 表来存储投票信息,然后创建帮助程序方法来响应 Lex (build_response),随后再确定逻辑。我们将使用 Python 这种最优秀的语言在最佳编辑器中进行编写。


Python


def lambda_handler(event, context):    if 'VoteEditor' == event['currentIntent']['name']:        editor = event['currentIntent']['slots']['editor']        resp = ddb.update_item(            Key={"name": editor.lower()},            UpdateExpression="SET votes = :incr + if_not_exists(votes, :default)",            ExpressionAttributeValues={":incr": 1, ":default": 0},            ReturnValues="ALL_NEW"        )        msg = "Awesome, now {} has {} votes!".format(            resp['Attributes']['name'],            resp['Attributes']['votes'])        return build_response(msg)    else:        return build_response("That intent is not supported yet.")
复制代码


基本上,如果我们收到某个编辑器的投票,而该编辑器并不存在,那么我们会添加该编辑器并附上 1 次投票。否则会增加该编辑器的得票数 (每次增加 1 票)。非常简单。


我们会告诉 Lex 自动程序使用 Lambda 函数来实现我们的目的。在执行下一步之前,我们可以测试一切是否能在 Lex 控制台中正常运行。


Amazon Connect

接下来就到了有趣的部分了。将 Lex 自动程序连接到 Connect 联系流,然后开始存储这些结果。


在联系流中使用自动程序之前,必须确保 Amazon Connect 实例拥有对它的访问权限。为此,我们需要转到 Amazon Connect 服务控制台,选择实例,然后导航至联系流。其中应该有一个名为“Amazon Lex”的部分,在那里,您可以添加自己的自动程序!



现在 Connect 实例已经知道 Lex 自动程序可供调用,接下来我们就可以创建包含 Lex 自动程序的新联系流。通过熟悉的“获取客户输入”小部件将自动程序添加到流中,但在单击该小部件时,其中会出现一个新的“Amazon Lex”选项卡。



里面提供有诸多选项,但简单来说,我们要添加使用自动程序的目的、要使用的自动程序版本,以及介绍自动程序的简短提示 (可能会提示客户输入信息)。


我们的最终联系流如下所示:



在真实示例中,系统可能会允许客户通过 Lex 自动程序执行许多事务,然后,根据“Error”或“ConnectToAgent”目的,将客户放入他们可与真人对话的队列中。


在此,我想特别指出教 Lex 理解 8kHz 音频的巨大优势及其如此重要的原因。Lex 最初接受训练时使用的语音模型与电话相比占用较大的带宽信道。当您与 Alexa 或 Lex 自动程序对话时,系统通常会以 16kHz 的最低速率对您发送的文本进行采样。通过这种保真度较高的记录,可更加轻松地识别声音差异,如“ess”(/s/) 和“eff”(/f/),音频专家如是告诉我。如果使用 Alexa,则音频流还会来自我们控制的有限的一些设备,因此,我们确切地知道麦克风发出的声音应是什么样子。但是,电话及其记录的音频依赖由人类植入的一些“卑鄙技巧”。人类及其耳朵非常擅长根据情景来辨识质量较差的录音的内容 (要获取此方面的证据,请参阅 NASA 阿波罗录音)。因此,大多数数字电话系统默认设置为使用 8kHz 采样率 (而非更高采样率),从而使带宽和保真度之间达到了一种较好平衡。这种基本采样率的首要问题是,您还必须应对以下事实:大量电话数据已失真 (您现在能听到我说话吗?)。目前市面上有数百家不同制造商提供的数千种不同设备,以及大量不同的软件实施方案和编解码器。那么,您该如何解决这一识别问题呢?


Lex 团队找出了解决此问题的最佳方法,即,扩展他们用来解析语音输入的模型集,以纳入专为 Connect 集成设计的 8kHz 模型。他们在 8kHz 数据集的真实客户服务呼叫中保留了自己的模型和网络,而且与其传统模型相比,单词识别率提高了 60% 以上。检测各个单词的准确率越高,识别目的的准确率也就越高。团队为此付出了巨大努力,这可让众多客户通过 Connect 执行更多操作。


最后再说明一下,Connect 使用完全相同的 PostContent 终端节点,因此,如果您是外部开发人员,也可使用该节点,而无需通过 Connect 来利用 Lex 中的这项 8kHz 功能。


希望大家都能喜欢这项功能,与往常一样,要了解真实细节,请参阅这些文档API 参考指南


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/new-amazon-connect-and-amazon-lex-integration/


2019-11-12 08:00678

评论

发布
暂无评论
发现更多内容

c++基础——杂谈2

菜鸟小sailor 🐕

c++ 语言

娱乐圈套路多?看区块链如何来破解

CECBC

网红 娱乐圈

云小课 | 不小心删除了数据库,除了跑路还能咋办?

华为云开发者联盟

数据库 数据恢复 dba

为什么海外服务器打开网站会卡呢?

德胜网络-阳

架构师训练营 1 期第 2 周:框架设计 - 总结

piercebn

极客大学架构师训练营

JAVA JDBC

Isuodut

传销资金盘挂靠区块链热点 肃清整顿热潮拉开帷幕

CECBC

区块链 金融

某大厂一位核心技术人员不小心泄漏的公司内部培训以及工作笔记内容,手慢无。

Java架构师迁哥

框架设计:作业

Nick~毓

来不及解释了,快上车!快速开发平台,助力企业搭乘万物互联顺风车

Philips

敏捷开发 企业开发 互联网革命

一周信创舆情观察(9.14~9.20)

统小信uos

虚拟卡兑换架构设计

孙志平

AI小白必读:深度学习、迁移学习、强化学习别再傻傻分不清

华为云开发者联盟

人工智能 学习 迁移

架构师训练营 1 期 - 第二周 - 设计原则

三板斧

极客大学架构师训练营

一文快速入门分库分表

程序员小富

Java 分库分表

因材施教,阿里腾讯大牛耗时7天,整理不同人群适合的面试题合集

小Q

Java 编程 程序员 架构 面试

跟着B站UP主小姐姐去华为坂田基地采访扫地僧

华为云开发者联盟

华为 技术 大牛 扫地僧

机构进场区块链安全基础设施准备好了么?

CECBC

区块链 数字资产

Rust所有者被修改了会发生什么?

袁承兴

rust 内存管理 智能指针

RN运行项目报错:Unable to resolve module `./debugger-ui/debuggerWorker.js` from ``

凌宇之蓝

ios android React Native

华为轮值董事长郭平2020全联接大会主题演讲:永远面向阳光,阴影甩在身后

华为云开发者联盟

5G ICT huawei

数据库-技术专题-SQL编写规范

洛神灬殇

四年开发经验从美团、360、陌陌、百度、阿里、京东面试回来感想

Java架构师迁哥

关于招聘的一些思考

石云升

面试 考核 招聘 下放招聘权

从『用户』到『客户』,企业服务平台如何实现高效转化?

易观大数据

Git 操作

老菜鸟

git

架构师训练营---第二周课后练习

Jacky.Chen

架构师训练营第 1 期第二周总结

Leo乐

极客大学架构师训练营

进击的无源光网络:产业园区里的“追光者”

脑极体

SpringBoot-技术专题-提升服务吞吐量

洛神灬殇

一个草根的日常杂碎(9月25日)

刘新吾

社会百态 生活随想 日常杂碎

Amazon Connect 和 Amazon Lex 集成_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章