写点什么

BERT 为什么是 NLP 的革新者

  • 2020-09-18
  • 本文字数:1765 字

    阅读完需:约 6 分钟

BERT为什么是NLP的革新者

本文最初发表在 Towards Data Science 博客,由 InfoQ 中文站翻译并分享。


语言模型 BERT 可以大幅提升许多任务的性能,那么它成功的背后是什么呢?

什么是 BERT?

BERT,全称 Bidirectional Encoder Representation from Transformers,是一款于 2018 年发布,在包括问答和语言理解等多个任务中达到顶尖性能的语言模型。它不仅击败了之前最先进的计算模型,而且在答题方面也有超过人类的表现。


BERT 是一个可以将文字转换为数字的计算模型。这个过程是至关重要的,因为机器学习模型需要以数字而非文字为输入,而一款可以将文字转换为数字的算法让人们可以直接使用原始的文本格式数据训练机器学习模型。



BERT 是可以将文字转换为数字的计算模型,图源Devlin et al., 2019

BERT 为何如此优秀?

对作者来说,BERT 的优秀之处主要在于以下三点:


  • 第一:使用大量数据预训练

  • 第二:可以处理文字语意

  • 第三:开源

1:BERT 使用海量数据预训练

BERT 提供两种不同大小模型,BERT-base(使用 BookCorpus 数据集训练,约 8 亿字)以及 BERT-large(使用英文维基百科训练,约 25 亿字)。两种模型均使用了巨大的训练集,而任何一个机器学习领域的人都明白,大数据的力量是相当无敌的。正所谓“熟读唐诗三百遍,不会做诗也会吟”,在见过 25 亿单词之后,再看到新单词时你也能猜到它会是什么意思。


因为 BERT 的预训练非常优秀,所以即使是应用在小型数据集上也能保持不错的性能。举例来说,作者最近参与了一个开发新冠(COVID-19)自动问答系统的项目,在没有进一步微调的情况下,BERT-base 在作者使用的数据集中的 15 个类别上,准确率达到 58.1%。更令人惊叹的时,“COVID”这个词甚至不在 BERT 的词汇库中,但它依然获得了相当高的准确率。

2: BERT 可以处理语意

之前的词嵌入方法,无论一个词处于什么样的语境下,都会返回同一个向量。而 BERT 则会根据上下文,为同一个词返回不同的向量。例如,在下面的例子中,旧方法会为“trust”返回相同的嵌入。


I can’t trust you.(我不能相信你。)

They have no trust left for their friend. (他们对自己的朋友已经没有信任感。)

He has a trust fund. (他有一个信托基金。)


相比之下,BERT 可以处理语意,根据“trust”语境的不同返回不同的嵌入。如果算法可以分辨出一个词使用情况的不同,就能获得更多的信息,性能也有可能得到提升。另一个可以处理上下文的语言建模方法是ELMo

3:BERT 是开源的

开源是个大加分项。机器学习领域中的很多项目都被开源化,因为代码开源可以让其他的研究人员轻松应用你的想法,从而促进项目的发展。BERT 的代码发布在了GitHub上,同时还附有代码使用相关的 README 文件,这些深入信息对于任何想要使用 BERT 的人来说有很大帮助。


在作者最开始使用 BERT 时,只花费了几分钟下载能运行的 BERT 模型,然后只用不到一小时的时间成功写出可以用在数据集中的代码。


一个非常强大的语言模型会同时具备上文中提到的全部三个方面,而这个模型可以在 SQuAD、GLUE 和 MultiNLI 等大名鼎鼎的数据集上会达到最顶尖的性能。它所拥有的这些巨大优势是让它如此强大和适用的原因所在。


BERT 利用大量数据进行预处理,用户可以直接将其应用在自己相对较小的数据集上。BERT 有上下文嵌入,性能会很不错。BERT 是开源的,用户可以直接下载并使用。它的应用范围如此之广,这就是为什么说 BERT 彻底改变了 NLP。


谷歌的研究人员,也是 BERT 的最初创造者,计划利用它来理解谷歌搜索,并提高谷歌自动问答服务的准确性。后来人们发现,BERT 的用处不仅仅只局限于谷歌搜索。BERT 有望改善计算机语言学的关键领域,包括聊天机器人、自动问答、总结和文本情感分析。自一年多前 BERT 的发布以来,其论文的引用已超过 8,500 次,其广泛实用性不难看出。此外,自 BERT 发表后,最大的国际 NLP 会议 Association for Computational Linguistics(ACL)的投稿量也翻了一番,从 2018 年的 1544 篇直接增到 2019 年的 2905 篇。


BERT 将继续为 NLP 领域带来革命性的变化,它为小型数据库中各种类型的任务提供实现高性能的机会。


延伸阅读:


Devlin et al.原论文(https://arxiv.org/pdf/1810.04805.pdf


ELMo,使用上下文嵌入的类似语言模型:


https://arxiv.org/pdf/1802.05365.pdf


原文链接


https://towardsdatascience.com/bert-why-its-been-revolutionizing-nlp-5d1bcae76a13


2020-09-18 08:002661
用户头像
刘燕 InfoQ高级技术编辑

发布了 1123 篇内容, 共 609.0 次阅读, 收获喜欢 1982 次。

关注

评论

发布
暂无评论
发现更多内容

Hologres V2.1版本发布,新增计算组实例构建高可用实时数仓

阿里云大数据AI技术

阿里云云原生专场精彩内容集锦丨2023 云原生产业大会

阿里巴巴云原生

阿里云 云原生

游戏字体渲染

游戏开发 计算机图形学 渲染 字体

部署SD-WAN需要哪些设备和软件?

Ogcloud

SD-WAN SD-WAN组网 SD-WAN服务商 异地组网

如何搭建企业级知识图谱系统

悦数图数据库

图数据库

Peplink 成为首家授权 Starlink 技术服务商

财见

云边协同的 RTC 如何助力即构全球实时互动业务实践

阿里巴巴云原生

阿里云 云原生

国内大模型打假胜诉第一案;苹果取代三星成为 2023 年智能手机销售冠军丨 RTE 开发者日报 Vol.128

RTE开发者社区

祝贺!我的同事丁宇获“2023 年度云原生产业领军人物”荣誉称号

阿里巴巴云原生

阿里云 云原生

Python程序员常用的IDE和其它开发工具

不在线第一只蜗牛

Python ide 编程语言 开发语言

阿里云 ACK One 新特性:多集群网关,帮您快速构建同城容灾系统

阿里巴巴云原生

阿里云 容器 云原生

海外云手机的三大实用性

Ogcloud

云手机 海外云手机

优化-Spring Boot项目服务端接口超时设置

alexgaoyh

Spring Boot Callable接口 @Transactional 接口超时

如何使用Postman导入Swagger API文档

Liam

后端 Postman 接口文档 API swagger

华为云医疗智能体eiHealth的高性能--AI助力医疗智慧化升级

人工智能 医疗 华为云

ETLCloud详解,如何实现最佳实践及问题排查

谷云科技RestCloud

ETL 数据集成

试用活动 300上车 年中大促

开源物联卡管理平台-设备管理

物联网 IoT eSIM安全 java 技术提升

构建智算时代的云原生应用平台,2023 云原生产业大会,阿里云在这里!

阿里巴巴云原生

阿里云 容器 云原生

阿里云云原生助力安永创新驱动力实践探索

阿里巴巴云原生

阿里云 云原生

Pixels:重新定义游戏体验的区块链农场游戏

Footprint Analytics

区块链游戏 链游 Pixels

首个云原生、分布式、全栈国产化银行核心业务系统投产上线 XSKY 助力构建存储基础设施

XSKY星辰天合

《机器人流程自动化能力评估体系 第1部分:系统和工具》行标发布

王吉伟频道

RPA 机器人流程自动化 信通院 超自动化 行业标准

数据安全应急响应政策汇总:一份从无到有的应急预案实战指南(附下载)

极盾科技

金融行业首个海量数据处理技术报告发布,“五化”技术助力金融数据潜能释放

腾讯云大数据

大数据

JNPF低代码开发平台总体架构介绍

互联网工科生

软件开发 低代码 JNPF

华为发布2024数据中心能源十大趋势

财见

SHQ Response 重新定义网络风险可视化与协作规则

财见

BERT为什么是NLP的革新者_AI&大模型_Jerry Wei_InfoQ精选文章