写点什么

如何为实时音视频设计小且优的深度学习模型?(上)

  • 2019-11-30
  • 本文字数:1349 字

    阅读完需:约 4 分钟

如何为实时音视频设计小且优的深度学习模型?(上)

在 11 月 25 日,DevFest 2018 在上海如期举行。声网 Agora 首席科学家钟声与在座的上千位开发者分享了演讲《Deep Learning for MobilePlatforms: Complexity and Performance Analysis》。以下是由 GDG 整理发布的演讲实录。

开场白

最近在微信群里看到一张很有意思的图,大家应该都见过大街小巷地铁站旁边的手机贴膜吧?但这张图的牌子上写的不是「手机贴膜」而是「模型调参」。用这个例子虽然有些不恰当,但人工智能学习算法确实正在成为我们生存的必杀技,可见人工智能有多火。

从 AI 的应用开始

回到我们今天的主题,我想问,今天的午餐和深度学习有什么共同之处?餐盒和黑盒,都是盒子。餐盒有一个沙拉、主菜和餐后的水果。黑盒子打不开、看不到。


今天的演讲试图稍稍进入黑盒里能看一下,作为工程师,我们都想知其然,也知其所以然。我就基于我们所做的工作稍稍解密一下深度学习某些方面。


声网主要提供实时音视频通信传输服务、编解码及前后处理等等,我们更多的聚焦在通信实时交互领域。


现在的社交娱乐应用里面有很多 AI 的应用。美颜,贴纸,包括一些交互动作的识别,变脸、变声都是属于风格转换,AI 算法在这些方面有很好的应用。


除了这些,AI 在后处理端也有很多应用。比如如何提升比较模糊的图像的细节,更清晰地呈现给大家,提高收视的体验;又比如由于网络传输线路上有丢包,接收的数据有失真,这个也可以利用 AI 算法来补偿。


AI 在云端也有更多的应用,比如内容的监管,比如黄色图片的鉴别,以及识别暴力图像,还有语音变成文本,以及情感计算等等,这些很多在实时通信领域里有非常好的应用。

超分辨率恢复模糊图像

下面以恢复模糊图像作为一个例子,介绍人工智能的深度算法和应用。


我们都知道超分辨率(超分,SR)对恢复细节有帮助。在我们的场景下,由于网络带宽受限,会产生丢包,因而此时会以低码率压缩和传输图像,解码出来的图像通常是会模糊一点,影响收视体验。尤其是在直播应用里,用户希望看到清晰的面容和听到清晰的声音。


超分是我们后处理的一步,作为跟前面的处理不相关的一个处理,这一步放在最后。视频源经过编码在网络上传输,解码器收到后经过解码出来是一个模糊的图像,经过超分辨率处理把细节提升或者放大,再显示出来。


深度神经网络已经被证明了可以较好地生成图像的细节。GAN 模型是一个非常有效的模型,它也是我们超分算法的基础模型,接下来主要是以 GAN 来做性能和复杂度的分析。

GAN 模型

下面介绍一下 GAN 的基本思路。它通常包含两个网络,一个是生成器,一个是判别器,这两个模型以又合作又对抗的方式运作,最后达到一个平衡,使得生成器能够产生以假乱真的数据,例如:


  • 当判别器接收到的是真实的图像数据,判别器会把它接受为一个真实的数据。

  • 当生成器输入的是一个低分辨率的数据,我们想生成高清的数据,希望生成器出来的数据像真的一样。但判别器的任务正好相反,它尽量不让生成的数据蒙混过关,并且要把它踢出去。


一旦被区别出来之后,生成器会反复训练、调参,使得生成的数据更像真的;判别器也会反复训练、努力提高自己的能力,鉴别假数据的能力越来越强。可谓道高一尺魔高一丈,最后二者收敛的时候判别器再也不能区分生成器生成出来的数据是真的还是假的,这个时候的结果就被判别器接受了。


最近几年在顶级 AI 会议上,三分之二以上的文章可能跟 GAN 有关的。


2019-11-30 22:11804

评论

发布
暂无评论
发现更多内容

架构师训练营week05 summary

Nick

极客大学架构师训练营

架构师训练营 - 第五周 - 学习总结

Anrika

极客大学架构师训练营

week05学习总结

Safufu

一致性Hash算法实现 - Java

羽球

极客大学架构师训练营 一致性哈希

第五周感悟

路人

极客大学架构师训练营

架构师训练营 No.5 周总结

连增申

week05 作业

Safufu

缓存、异步、集群和分布式等架构模式的实践

dony.zhang

负载均衡 缓存 消息队列 分布式缓存 异步

区块链重塑供应链

CECBC

常用分布式组件

张瑞浩

一致性Hash算法

羽球

一致性hash

架构师训练营 No.5 周作业

连增申

管理堆内存,Rust是怎么做的?所有权!

袁承兴

c++ rust 堆内存管理 内存管理 垃圾回收

week5-作业

蒜泥精英

一致性HASH的golang实现

麻辣

【架构师训练营】week 5 homework

eazonshaw

极客大学架构师训练营

架构师训练营 第五周 学习总结

亮灯

架构师训练营作业 (第五周)

小遵

架构课第5课作业

张瑞浩

架构师训练营 - 学习笔记 - 第五周

小遵

架构师训练营 第五周 作业

亮灯

架构师训练 第五周 作业

LiJun

【架构师训练营】第 5 周总结

花生无翼

极客大学架构师训练营

架构师训练营 第五周 分布式理论知识分享1

极客

Week 05 作业

鱼_XueTr

负载均衡 hash

作业 - 第5周

Happy-Coming

架构师训练营 第五周 【作业】

小K

分布式缓存架构

chenzt

架构师训练营第 0 期第5周作业

无名氏

2020-07-04-第五周作业

路易斯李李李

week5-作业 一致性 hash 算法

Geek_z9dmvw

如何为实时音视频设计小且优的深度学习模型?(上)_文化 & 方法_RTE开发者社区_InfoQ精选文章