写点什么

突破视频编码模式级压缩瓶颈:一种基于长短期相关性建模的帧内模式编码方法

李俊儒,张莉

  • 2023-03-04
    北京
  • 本文字数:2215 字

    阅读完需:约 7 分钟

突破视频编码模式级压缩瓶颈:一种基于长短期相关性建模的帧内模式编码方法

视频压缩的核心在于去除视频信号中的冗余信息,而其中对于空域冗余的去除通常使用帧内预测的方式来实现。比如,大多数的自然场景的图像内容变化平缓,相邻像素间表现出较强的相似性,因此可以利用周边已编码的信息通过特定的映射和插值实现对当前编码单元的帧内预测。这种帧内预测方式已经在标准领域得到广泛的应用。


在 H.264/AVC  标准 [1] 中,帧内预测利用左侧或上侧邻近已重构像素组成参考像素组,根据特定的映射来预测当前编码单元。对于编码单元尺寸为 4×4 的编码单元,有 9 种预测模式可供选择,其中包括 8 种角度模式和 DC 模式;编码单元尺寸为 16×16 的编码单元,则仅支持 4 种预测模式。 H.265/HEVC 标准 [2] 中扩展了帧内预测的方向,支持多达 33 种角度预测模式,以及直流( DC )预测模式和平面( Planar )预测模式。


为了更精细地预测视频中可能出现的任意方向的结构或纹理,新一代视频编码标准 H.266/VVC AVS3 ,分别将帧内预测模式的数量扩充到 67 和 66 种。此外, VVC 采纳了多行预测( Multi Reference Line , MRL ),扩充帧内预测的参考像素区域。 MRL 支持使用更远处的重构像素预测当前编码单元,进一步利用像素间的相关性去除空域冗余。帧内预测的发展进程如下图所示。


图 1. 帧内预测演进示意图


如上所述,在视频编码标准发展中,为了适应多样的纹理内容,帧内预测技术基于多假设的理论支持了更多高效的帧内预测模式。最优的预测模式需要通过率失真优化( Rate Dirstion Optimization , RDO )代价决策,其二值化索引则传递到解码端用于视频的解码重建。虽然细粒度的帧内预测设计可以为帧内编码带来性能增益,但帧内模式的传递代价却随之增大。在相同码率下,更丰富的预测模式使得预测模式的表达位占用的带宽也越来越高。因此,帧内预测模式的编码方式至关重要。若以等长编码为例,每个编码块使用 4 比特则足以表达对于 H.264/AVC 中的 9 种编码模式。当编码模式扩展到 67 个时,则需要使用 7 比特来编码帧内预测模式的索引。实际中,帧内模式的编码会通过构建最可能模式列表( Most Probable Mode , MPM )的方式,为出现概率较高的模式分配较短的码字,提高帧内模式编码的效率。在 AVC 标准中,针对 9 个预测模式设计了 1 个 MPM 的编码方式。


HEVC 标准采用 MPM 列表可包含 3 个最可能的帧内模式,以便更高效地表示 35 种预测模式。 VVC 标准则进一步扩展了帧内预测模式的编码方式, MPM 列表中包含 6 个候选项。最可能模式列表通常基于邻近编码单元(如左上方、左侧、左下方、上方、右上方)的帧内预测模式来构建,并使用一个标志位来区分当前预测模式是否为最可能预测模式。然而,仅利用空域邻近编码单元的预测模式信息来消除模式间的冗余,一定程度上限制了最可能模式预测的准确性。


根据信息论——为概率较大的符号分配较短的码字,对概率较小的符号分配较长的码字——能降低整体信源符号编码的平均码长。为进一步提升帧内模式编码的性能,我们针对新一代视频编码标准 VVC 和 AVS3 提出一种基于长期与短期相关性建模的帧内模式编码方法 [3] 。所提出的方案可以充分利用长期帧内模式的统计特性并结合短期帧内预测模式,高效构建最可能模式列表,打破传统帧内模式编码时仅考虑空域邻近帧内模式的局限性。帧内预测的长期模式级相关性体现在非邻近的相似纹理结构倾向于选用相同的帧内模式进行编码,如图 2 所示。


图 2. 局部区域内的帧内预测模式。浅蓝色为模式 66,粉色为模式 34,红色为 Planar 模式


具体来说,在编码和解码的过程中动态维护长期模式列表 以及 短期模式列表


长期模式列表 的构建是基于已编码帧内模式编码的统计,长期模式列表的具体构建与更新过程如图 3 所示。首先,根据当前帧内预测模式 Mi 对模式的频率 FnMi 进行更新,模式 Mi 更新后的频率为 Fn+1Mi 。其次,根据更新后的频率表中的频率值对频率表重新排序,频率高的排在靠前的位置。最后,按照频率高低导出更新后的模式表,模式表中最前面的模式对应的频率是最高的,出现频率最高的帧内模式将优先选入长期模式列表中。


图 3. 长期模式列表构建与更新示意图


短期模式 列表则基于纹理方向的空域延续性,主要由空域邻近编码单元的帧内模式构成。最终 MPM 列表的构建将通过预先训练的条件随机场模型来决策长期模式以及短期模式的组合方式, MPM 的构建过程如图 4 所示。


图 4. MPM 列表构建示意图


所提出的帧内模式编码可为 VVC 带来 1.4% 的性能增益且编解码复杂度几乎不变。部分屏幕内容测试序列在全 I 帧配置下可实现超过 6% 的 BD-Rate 节省。所提出的方法也可为 AVS3 软件平台带来明显的压缩性能提升,已被 AVS3 标准采纳。


参考文献


[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 560–576, July 2003.

[2] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp. 1649–1668, Dec 2012.

[3] J. Li, M. Wang, L. Zhang, K. Zhang, H. Liu, S. Wang, S. Ma and W. Gao, “Unified intra mode coding based on short and long range correlations,” IEEE Transactions on Image Processing, vol. 29, pp. 7245-7260, June 2020.

2023-03-04 18:547366
用户头像
鲁冬雪 GMI Cloud Head of China Marketing

发布了 367 篇内容, 共 300.1 次阅读, 收获喜欢 301 次。

关注

评论

发布
暂无评论
发现更多内容

2023-06-03:redis中pipeline有什么好处,为什么要用 pipeline?

福大大架构师每日一题

redis 福大大

Nautilus Chain:独特且纯粹的创新型 Layer3

BlockChain先知

音乐制作软件Ableton Live 11 Suite最新v11.3.3中文版下载安装教程

Rose

音乐制作软件 Live Suite 11破解 Ableton Live Suite下载 Ableton Live 安装教程 中文版Ableton Live 11

程序员的私人助理:Amazon CodeWhisperer

申屠鹏会

AI Codec

一种适用于大量租户大量角色的权限系统设计

Java你猿哥

Java ssm 权限管理

一文读懂Java多线程背后的故事

Java 多线程

强化学习基础篇[3]:DQN、Actor-Critic详细讲解

汀丶人工智能

人工智能 深度学习 算法 强化学习 DQN

原来JS函数提升 变量提升原来是这样

夜猫西街

RAW Power for Mac(强大的raw图像处理软件)中文激活版

Rose

mac软件下载 Raw图像处理软件 苹果软件下载 RAW Power破解 RAW Power中文

深度学习应用篇-计算机视觉-图像增广[1]:数据增广、图像混叠、图像剪裁类变化类等详解

汀丶人工智能

人工智能 深度学习 CV 计算机视觉 图像增广

构建可靠的物联网系统:了解 MQTT 性能测试

EMQ映云科技

物联网 性能测试

Mac版本Photoshop ai beta爱国版安装使用-AI创意填充绘图的10 种用法

Rose

ps AI绘图 ps爱国版 Photoshop测试版下载 AI创意填充绘图功能怎么用

一文纵览Umi's Friends生态,GameFi浪潮的变革者

鳄鱼视界

分治法求序列中的最大和次大元素

夜猫西街

公司裁员日常的骚操作和警告

HoneyMoose

构筑算力时代的全光底座,华为带来了面向F5.5G演进的战略蓝图

脑极体

光网络

ps ai beta爱国版mac版安装 Photoshop AI创意填充绘图的6种应用场景

Rose

PS2023破解 PS2023最新版 Photoshop beta爱国版 创意填充

mac文本处理工具FSNotes中文版FSNOTES笔记软件

Rose

Mac笔记软件 FSNotes下载 FSNotes破解 FSNotes mac中文版 苹果电脑笔记工具

首屈一指,清华大佬首推"中高级Java程序员进阶小册",程序员架构进阶必备

Java java面试 Java八股文 Java面试题 Java面试八股文

Maven的依赖作用域和依赖传递

Java maven 依赖

Nautilus Chain:我们将支持EIP6969

鳄鱼视界

对上一年工作中猫腻的总结

HoneyMoose

C语言编程-位域

芯动大师

鲨疯了,阿里限时开源的亿级高并发设计实录,Github都为之低头

Java 系统设计 高并发

eMail Address Extractor for Mac(邮件地址提取软件)

Rose

苹果软件下载 eMail Address Extractor Mac邮件地址提取

硬核!靠这套MySQL笔记轻松过了阿里二面,基础架构调优齐全了

Java MySQL 数据库

公司裁员日常的骚操作和警告 —— 冻结招聘(Hiring Freeze)

HoneyMoose

突破视频编码模式级压缩瓶颈:一种基于长短期相关性建模的帧内模式编码方法_语言 & 开发_InfoQ精选文章