东亚银行、岚图汽车带你解锁 AIGC 时代的数字化人才培养各赛道新模式! 了解详情
写点什么

Google 首次引入自动网络设计,高效解决大规模深度推荐模型的特征嵌入问题

  • 2019-08-21
  • 本文字数:2206 字

    阅读完需:约 7 分钟

Google首次引入自动网络设计,高效解决大规模深度推荐模型的特征嵌入问题

本文来自“深度推荐系统”专栏,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文主要介绍 Google 在大规模深度推荐模型上关于特征嵌入的最新论文。

一、背景

大部分的深度学习模型主要包含如下的两大模块:输入模块以及表示学习模块。自从 NAS[1]的出现以来,神经网络架构的设计上正在往数据驱动的自动机器学习方向演进。不过之前更多的研究都是聚焦在如何自动设计表示学习模块而不是输入模块,主要原因是在计算机视觉等成熟领域原始输入(图像像素)已经是浮点数了。


输入模块:负责将原始输入转换为浮点数;


表示学习模块:根据输入模块的浮点值,计算得到模型的最终输出;


而在推荐、搜索以及广告工业界的大规模深度模型上,情况却完全不同。因为包含大量高维稀疏的离散特征(譬如商品 id,视频 id 或者文章 id)需要将这些类别特征通过 embedding 嵌入技术将离散的 id 转换为连续的向量。而这些向量的维度大小往往被当做一个超参手动进行设定。


一个简单的数据分析就能告诉我们嵌入向量维度设定的合理与否非常影响模型的效果。以 YoutubeDNN[2]为例,其中使用到的 VideoId 的特征词典大小是 100 万,每一个特征值嵌入向量大小是 256。仅仅一个 VideoId 的特征就包含了 2.56 亿的超参,考虑到其他更多的离散类特征输入模块的需要学习的超参数量可想而知。相应地,表示学习模块主要包含三层全连接层。也就是说大部分的超参其实聚集在了输入模块,那自然就会对模型的效果有着举足轻重的影响。

二、主要工作

Google 的研究者们在最新的一篇论文[3]中提出了 NIS 技术(Neural Input Search),可以自动学习大规模深度推荐模型中每个类别特征最优化的词典大小以及嵌入向量维度大小。目的就是为了在节省性能的同时尽可能地最大化深度模型的效果。


并且,他们发现传统的 Single-size Embedding 方式(所有特征值共享同样的嵌入向量维度)其实并不能够让模型充分学习训练数据。因此与之对应地,提出了 Multi-size Embedding 方式让不同的特征值可以拥有不同的嵌入向量维度。


在实际训练中,他们使用强化学习来寻找每个特征值最优化的词典大小和嵌入向量维度。通过在两大大规模推荐问题(检索、排序)上的实验验证,NIS 技术能够自动学习到更优化的特征词典大小和嵌入维度并且带来在 Recall@1 以及 AUC 等指标上的显著提升。

三、Neural Input Search 问题

NIS-SE 问题:SE(Single-size Embedding)方式是目前常用的特征嵌入方式,所有特征值共享同样的特征嵌入维度。NIS-SE 问题就是在给定资源条件下,对于每个离散特征找到最优化的词典大小 v 和嵌入向量维度 d。


这里面其实包含了两部分的 trade-off:一方面是各特征之间,更有用的特征应该给予更多的资源;另一方面是每个特征内部,词典大小和嵌入向量维度之间。对于一个特征来说,更大的词典可以有更大的覆盖度,包含更多长尾的 item;更多的嵌入向量维度则可以提升 head item 的嵌入质量,因为 head item 拥有充分的训练数据。而 SE 在资源限制下无法同时做到高覆盖度和高质量的特征嵌入。所以需要引入 ME(Multi-size Embedding)。


NIS-ME 问题:ME 允许每个特征词典内不同的特征值可以有不同的嵌入向量维度。其实就是为了实现越频繁的特征值拥有更大的嵌入特征维度,因为有更多的训练数据;而长尾的特征值则用更小的嵌入特征维度。引入 ME 为每一个类别离散特征找到最优化的词典大小和嵌入向量维度,就可以实现在长尾特征值上的高覆盖度以及在频繁特征值上的高质量嵌入向量。下图给出了 embedding 使用的场景例子中,SE 和 ME 使用上的区别。


四、NIS 解决方案

要想为每个类别离散特征手动找到最优化的词典大小和嵌入向量维度是很难的,因为推荐广告工业界的大规模深度模型的训练时很昂贵的。为了达到在一次训练中就能自动找到最优化的词典大小和嵌入向量维度,他们改造了经典的 ENAS[4]:


  • 首先针对深度模型的输入模块提出了一个新颖的搜索空间;

  • 然后有一个单独的 Controller 针对每一个离散特征选择 SE 或者 ME;

  • 其次可以根据 Controller 决策后考虑模型准确度和资源消耗计算得到 reward;

  • 最后可以根据 reward 使用强化学习 A3C[5]训练 Controller 进行迭代。

搜索空间

Embedding Block 的概念实际上就是原始 Embedding 矩阵的分块。如下图所示,假设原始 Embedding 矩阵大小是(10M,256),图 a 将其分成了 20 个 Embedding Block。Controller 为每个特征有两种选择:图 b 所示的 SE 以及图 c 的所示的 ME。


Reward 函数

主模型是随着 Controller 的选择进行训练的,因此 Controller 的参数实际上是根据在验证集上前向计算的 reward 通过 RL 追求收益最大化而来。考虑到在限定资源下的深度模型训练,这里的 reward 函数设计为同时考虑业务目标与资源消耗。对于推荐领域的两大主要任务:信息检索和排序,信息检索的目标可以使用 Sampled Recall@1;而排序的目标则可以使用 AUC。

五、实验结果

他们在两大大规模推荐模型问题:检索和排序上进行了实验。在同等资源消耗的情况下,NIS 可以获得显著提升,详细数据如下图所示。


参考文献

[1] Neural Architecture Search with Reinforcement Learning


[2] Deep Neural Networks for Youtube Recommendations


[3] Neural Input Search for Large Scale Recommendation Models


[4] Efficient Neural Architecture Search via Parameters Sharing


本文授权转载自知乎专栏“深度推荐系统”。原文链接:https://zhuanlan.zhihu.com/p/73369087


公众号推荐:

2024 年 1 月,InfoQ 研究中心重磅发布《大语言模型综合能力测评报告 2024》,揭示了 10 个大模型在语义理解、文学创作、知识问答等领域的卓越表现。ChatGPT-4、文心一言等领先模型在编程、逻辑推理等方面展现出惊人的进步,预示着大模型将在 2024 年迎来更广泛的应用和创新。关注公众号「AI 前线」,回复「大模型报告」免费获取电子版研究报告。

AI 前线公众号
2019-08-21 14:416659

评论

发布
暂无评论
发现更多内容

模块四作业(试卷存储设计)

天琪实刚亮

[Day32-03]-[二叉树]不同的二叉搜索树

方勇(gopher)

LeetCode 二叉树 动态规划 数据结构和算法 卡特兰数

[Day32-04]-[二叉树]二叉树的最近公共祖先

方勇(gopher)

LeetCode 二叉树 数据结构和算法

2022必会的前端手写面试题

buchila11

前端面试

面向快速反应的工程团队--QRF团队模型

俞凡

管理 研发效能

Hadoop全分布式部署

芝士味的椒盐

Java 大数据 hadoop 5月月更

软件架构的23个基本原则

俞凡

架构

[Day32-02]-[二叉树]在二叉树中增加一行

方勇(gopher)

LeetCode 二叉树 数据结构和算法

千万级学生管理系统的考试试卷存储方案

CityAnimal

架构实战营 #架构实战营 架构师实战营 「架构实战营」

网站开发进阶(二)阿里云将80端口请求转发到其他端口

No Silver Bullet

5月月更 端口转发 端口映射

一、何为应用系统高可用

穿过生命散发芬芳

5月月更

【愚公系列】2022 年 05月 二十三种设计模式(一)-工厂方法模式(Factory Method Pattern)

愚公搬代码

5月月更

在线Excel转XML工具

入门小站

工具

前端食堂技术周刊第 35 期:Vitest v0.10.0、Jest 28、Ant Design v4.20.0、Lerna 官宣停止维护、UnoCSS 交互式

童欧巴

JavaScript web前端 前端工程师

Kotlin 中的泛型:协变与逆变

如浴春风

5月月更

DDD实战(9):冲刺1战术之服务设计(上)

深清秋

DDD 软件架构 生鲜电商系统

设计千万级学生管理系统的考试试卷存储方案

唐诗宋词

这是一篇关于哈希表的爽文

武师叔

5月月更

千万级学生管理系统的考试试卷存储方案

鱼恨水

[Day32-05]-[BST] BST最近公共祖先

方勇(gopher)

LeetCode 二叉树 数据结构和算法

maven构建docker镜像三部曲之一:准备环境

程序员欣宸

Java Docker 5月月更

M4: 设计千万级学生管理系统的考试试卷存储方案

Jadedev

架构实战营

关于“运放“这些知识点

謓泽

5月月更

使用PIL.Image库极简生成含冬奥会元素头像

芝士味的椒盐

Python 冬奥会 5月月更

linux之登录式shell和非登录式shell

入门小站

Linux

运营好公众号需要具备的能力/技能

源字节1号

软件开发

Java-进阶:多线程2

爱好编程进阶

Java 程序员 后端开发

Kubernetes 如何将 Pod 分配给节点

玄月九

Kubernetes 污点 亲和 反亲和 容忍

这个页面效果看起来真恶心,怎么解?

石云升

团队管理 项目管理 职场经验 5月月更

今天是第几周

入门小站

工具

nginx配置系列(四)请求限制

乌龟哥哥

5月月更

Google首次引入自动网络设计,高效解决大规模深度推荐模型的特征嵌入问题_AI&大模型_深度传送门_InfoQ精选文章