硬核干货——《中小企业 AI 实战指南》免费下载! 了解详情
写点什么

一致性与可用性:Werner Vogels 谈最终一致性

  • 2008-01-17
  • 本文字数:2019 字

    阅读完需:约 7 分钟

直到 90 年代中期,当谈到数据复制的时候,分布的透明性和数据的一致性常常都是重要的工作目标。随着大型 Internet 系统开始崛起,可用性(availability)也成了另一项重要的考虑因素。 Eric Brewer 提出的 CAP 定理说,“在数据共享的系统的三项属性当中,数据一致性、系统可用性和对网络分区的耐受性,在任何给定时间内都只能达成其中的两项”。由于“在较大分布规模的系统中,网络分区是给定的”,因此一致性和可用性必有一项需要放宽。

在此前提下,最终一致性(eventual consistency)的概念开始赢得关注。与他在 QCon London 2007 上的演讲一脉相承,Werner Vogels 最近在博客上总结了一些与大规模数据复制及一致性需求相关的原则、抽象和权衡

他强调说一致性并不是绝对优先考虑的事:

不一致是可以容忍的,这有两个理由:一是可以在高并发条件下提高读写性能;二是处理一些分区状况——多数决模型(majority model)有可能使系统的一部分表现为不可用,虽然那些节点正运行良好。

不一致是否可接受取决于客户应用程序。Vogels 给出了一个网站的例子,例中真正重要的是“用户感知到的一致性”,也就是让不一致窗口——即“更新发生时刻到任何观察者都一定能观察到更新后数据的时刻之间的时间段”——“小于顾客对下一页面加载时间的期待”,这样更新就可在预期发生下一次读取的时刻之前传播到整个系统。

如果换成更浅显的语言,Vogels 说,“看待一致性有两种角度”:

一种是从开发者 / 客户端的角度;他们如何观察数据更新。第二种是从服务器的角度;更新如何流经整个系统,系统对更新有何保证。

在客户端,Vogels 列举了四个角色:一个被观察者看作是“黑盒”的存储系统,而观察者由三个进程来扮演:“进程 A[……] 对存储系统进行读写”,“进程 B 和进程 C[……] 独立于进程 A,它们也读写存储系统”。这些进程是“独立的,并且需要相互通信以共享信息。”客户端一致性就在于“一个观察者(在此即进程 A、B 或 C)如何以及何时看到存储系统中的一个数据对象被更新。”

一致性有不同程度:

  • 强一致性。在更新完成后,(A、B 或 C 进行的)任何后续访问都将返回更新过的值。
  • 弱一致性。系统不保证后续访问将返回更新过的值,在那之前要先满足若干条件。通常条件就是经过一段时间,也就是不一致窗口
  • 最终一致性。存储系统保证如果对象没有新的更新,最终(在不一致窗口关闭之后)所有访问都将返回最后更新的值。

Vogels 还概要说明了最终一致性模型的各种变体:

  • 因果一致性。如果进程 A 通知进程 B 它已更新了一个数据项,那么进程 B 的后续访问将返回更新后的值,且一次写入将保证取代前一次写入。与进程 A 无因果关系的进程 C 的访问遵守一般的最终一致性规则。
  • “读己之所写(read-your-writes)”一致性。这是一个重要的模型。当进程 A 自己更新一个数据项之后,它总是访问到更新过的值,绝不会看到旧值。这是因果一致性模型的一个特例。
  • 会话(Session)一致性。这是上一个模型的实用版本,它把访问存储系统的进程放到会话的上下文中。只要会话还存在,系统就保证“读己之所写”一致性。如果由于某些失败情形令会话终止,就要建立新的会话,而且系统的保证不会延续到新的会话。
  • 单调(Monotonic)读一致性。如果进程已经看到过数据对象的某个值,那么任何后续访问都不会返回在那个值之前的值。
  • 单调写一致性。系统保证来自同一个进程的写操作顺序执行。要是系统不能保证这种程度的一致性,就非常难以编程了。

在服务器端,关注的是如何达到一致性和可用性的程度要求。Vogels 举出了各种场景,其中“N 是保存数据副本的节点数量,W 是在更新完成之前需要确认收到更新的副本数量,R 是当通过一次读操作访问一个数据对象时要联系的副本数量”。

如果 W+R > N,那么写集合与读结合总是重叠的,那么我们可以保证强一致性。[……] 这种遵循简单的法定人数规则(basic quorum protocols)的安排方法,其问题是当系统由于某种失败而不能写入到 W 个节点时,写操作就必须失败,使系统不可用。

[…]

当 R=1 且 N=W,对读操作是最优的。当 W=1 且 R=N,这样的优化可以得到非常快速的写操作。当然在后一例中,要是存在失败就保证不了了;而且如果 W < (N+1)/2 有可能出现写冲突,因为写集合没有重叠。

当 W+R <= N 就会出现弱一致性 / 最终一致性,即读集合与写集合没有重叠。如果故意要这么安排,又不是出于某种失败情形的考虑,那么只有把 R 设为 1 才是合理的。

[…]

如果 W+R <= N,那么系统就存在缺陷,有可能从未收到更新的节点读取数据。

“读己之所写”一致性、会话一致性和单调一致性是否可以达成,取决于客户端对为其执行分布式协议的服务器的“粘度”。如果每次都是同一台服务器,那么就比较容易保证“读己之所写”一致性和单调一致性。这样做会使管理负载平衡以及容错变得稍困难一些,但这是一种简单的方案。使用会话可使意图更加明确,且为客户端提供了适当的推理基础。

查看英文原文: Consistency vs. availability: eventual consistency by Werner Vogels

2008-01-17 19:586723
用户头像

发布了 225 篇内容, 共 73.0 次阅读, 收获喜欢 52 次。

关注

评论

发布
暂无评论
发现更多内容

2023 数字生态发展大会,和鲸 ModelWhale 入选中国信通院“铸基计划”《高质量数字化转型产品及服务全景图》

ModelWhale

数字化转型 中国信通院 铸基计划

【实践篇】推荐算法PaaS化探索与实践 | 京东云技术团队

京东科技开发者

PaaS 推荐算法 PaaS平台化能力 企业号 7 月 PK 榜

数据库优化器设计穿越探索之旅

阿里技术

数据库 架构

PoseiSwap 即将开启质押,利好刺激下 POSE通证短时涨超 30%

西柚子

信创产业未来发展如何

小魏写代码

信创 信创产业

UPS设备在物流机房中的应用浅析 | 京东物流技术团队

京东科技开发者

机房管理 企业号 7 月 PK 榜 UPS

和鲸 ModelWhale 与海光适配认证,“国产 CPU +开发平台” 双轮驱动信创生态建设及 AI 产业应用

ModelWhale

cpu 数字化转型 信创 数据科学 信创产业

瀚元科技:利用A-OPS 智能运维助力边缘服务器运维效率提升30%

openEuler

Linux 运维 操作系统 openEuler 边缘

如何开发一对一视频源码

山东布谷网络科技

App 源代码

【落下帷幕】2023 中国大学生计算机设计大赛大数据应用大类国赛评审

ModelWhale

云计算 数据分析 在线编程 数据科学竞赛 中国大学生计算机设计大赛

浅析 TiSpark v3.x 新变化

TiDB 社区干货传送门

版本测评 新版本/特性解读 7.x 实践

HDC.Together2023 HarmonyOS学生公开课议程抢先看!

HarmonyOS开发者

HarmonyOS

暑期参加百度网盘AI大赛,夺万元现金、获大厂内推!

飞桨PaddlePaddle

人工智能 百度 paddle 飞桨 百度飞桨

[硬核技术] 时序数据预测算法研究:Prophet

乘云数字DataBuff

防范地质灾害,北斗用芯监测

江湖老铁

如何基于 Apache Doris 构建新一代日志分析平台

SelectDB

数据库 大数据 数据分析 Doris

区块链服务网络的顶层设计与应用实践

BSN研习社

ChatGPT下程序员应该何去何从?

小魏写代码

ChatGPT 新手用ChatGPT

【好文推荐】敏捷绩效考核如何做?

ShineScrum

并发编程-CompletableFuture解析 | 京东物流技术团队

京东科技开发者

并发编程 CompletableFuture JDK1.8 企业号 7 月 PK 榜

【7.21-7.28】写作社区优秀技术博文一览

InfoQ写作社区官方

热门活动 优质创作周报

聊聊测试当下的求职困境

老张

软件测试 求职面试

PoseiSwap 即将开启质押,利好刺激下 POSE通证短时涨超 30%

BlockChain先知

软件测试/测试开发丨Python 内置库 sys 学习笔记分享

测试人

Python 程序员 软件测试

河北幸福消费金融基于 Apache Doris 构建实时数仓,查询提速 400 倍!

SelectDB

数据库 大数据 数据分析 后端 Doris

Java 命令行参数解析方式探索(四):Spark & Flink

冰心的小屋

Java spark 命令行 command Parameter

AI算力爆发,新职业出现,你发现了吗?

小魏写代码

人工智能 AI算力

DWS轻量化更新黑科技:宽表加工优化

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 7 月 PK 榜

一致性与可用性:Werner Vogels谈最终一致性_架构_Sadek Drobi_InfoQ精选文章