写点什么

使用 2-3 法则设计分布式数据访问层

  • 2015-02-07
  • 本文字数:2097 字

    阅读完需:约 7 分钟

【编者按】《博文共赏》是 InfoQ 中文站新推出的一个专栏,精选来自国内外技术社区和个人博客上的技术文章,让更多的读者朋友受益,本栏目转载的内容都经过原作者授权。文章推荐可以发送邮件到 editors@cn.infoq.com

引言

如今移动互联网行业呈爆发式发展,随着业务用户规模和业务逻辑趋向复杂,后端系统的开发和维护变得越来越困难,目前业界涌现出各种各样的技术文章介绍分布式缓存设计、分布式数据库设计、负载均衡、HA 策略等等,这些都是支撑分布式数据访问层的基石,不过,本文将从另一个角度探讨分布式数据访问层 (Data Access Layer) 的框架设计。

本文要介绍的是 2-3 法则(2 个维度,3 个原则)在分布式 DAL 框架设计中的指导作用,两者共同完成 DAL 层封装,主要分为两点:1)从水平与垂直维度正交分析业务系统设计;2)定义 3 条必须遵守的设计原则,最重要的是 DAL 层从水平维度抽象数据访问策略模型,即个 3 原则中的第 3 条。

本文最后一节,对分布式数据访问框架做了探讨,提出了两种实现思路。

分布式 DAL 解决的问题

在分布式系统中,每一台服务器都需要访问本地缓存、分布式 MC 缓存、分布式后台数据库,对于同一个业务模块,随着业务变复杂,需要定义越来越多的数据 Model,按照一定的规则存储在本地缓存、分布式缓存以及后台数据库中。

目前,业界的数据访问层定位于应用程序与持久化数据库之间,比如淘宝的 TDDL、IBatis Sharding 等,主要完成数据的分库分表、读写分离等,本文的数据存储涵盖缓存、数据库、文件系统,现有的数据库 DAL 中间件、Redis 客户端、MC 客户端将作为本文的水平维度的 Adaptor,主要解决的问题:

  1. 数据访问在水平数据存储维度的一致性问题。
  2. 快速增加数据 Model 的能力。
  3. 优雅、清晰、模块化的数据访问层代码。

两个维度抽象设计

对于上节的问题,下面列举了水平和垂直维度抽象思考的例子。

假设水平维度:

  1. 部分热数据存储在本地缓存,本文使用 EhCache。
  2. 部分热数据存储在前端缓存,本文使用 MC。
  3. 全量数据存储在数据库缓存,本文使用 MySQL。

假设垂直维度:

  • 数据模型 FileMeta,需要同时存储在 LocalCache、Redis 和 MySQL 中。
  • 数据模型 BlockMeta,需要存储在 LocalCache、MC 中。
  • 数据模型 Context,需要存储在 MC、MySQL 中。

按照上面的分析,我们画出系统两个维度正交设计图,如下:

Composition 而不是 Inheritance

我们可以想到垂直维度定义 N = 3 个数据模型接口,水平维度定义 N = 3 个分层接口,但是水平维度和垂直维度是什么关系呢?

在本文的设计中,对问题做了进一步思考,水平维度的接口全部由垂直维度的数据模型接口组合(Composition)而成,完成所有业务只需要定义 N + M + 1 个接口,而不是 N * M + 1 个接口,多余的那个是 DAL 接口,完成数据访问层封装工作,第一节例子中的接口定义见下图:

设计原则

上节主要介绍了接口设计,这里说一下实现,数据模型类非常简单,只要 MC Client、TDDL、EhCache 在不同层完成相应接口实现,最重要的是 DAL 实现类,需要完成水平各个维度的策略存储,比如对一个 Model,顺序写入 MC 和 MySQL,根据业务实践经验,总结出 3 条设计原则:

  1. 每一个数据模型都有 CRUD 方法,即数据操作的增删改查,对于 MC 或者 LocalCache 来说,增加操作和修改操作可能是一致的,这种情况也必须严格定义 CRUD 方法。
  2. DAL 层封装所有的数据访问,保证数据的一致性存储和可靠性,DAL 层的实现调用 ILocalCacheService、IMCService、IDAOService,根据不同数据模型的存储策略,分别去调用缓存和数据库服务,数据模型如果仅存在 MySQL 或者 MC,也需要在 DAL 层做封装,这样虽然对开发效率有一定影响,但是整体开发和维护成本降低很多。
  3. DAL 实现抽象出一个 DALContext 和一个 Executor,对于不同的数据模型,配置出不同的 DALContext,比如顺序存储在 MC 和 MySQL 或者同步写入 MC 异步写入 MySQL,DAL 也需要负责出错处理、水平维度的容灾切换等。

分布式数据访问框架

对于互联网后端应用来说,最主要的功能就是处理数据,对 DAL 层的探索与优化是非常有价值的,基于本文提出的 2-3 法则,感兴趣的读者可以构建一个 DAL 开源项目,有两种思路。

第一种思路是:

  1. 定义数据模型以及存储配置策略规范,可以使用类似 protobuf 的规范。
  2. 根据业务定义的数据模型和存储配置策略,生成业务代码。
  3. 开发者在此基础上扩充完善业务代码。

第二种思路是:

  1. 定义数据模型以及存储配置策略规范,可以使用类似 protobuf 的规范。
  2. 开发 DAL 中间件(容器),根据业务定义的数据模型和存储配置策略,运行时完成所有的数据访问操作代理。

第一种相对容易,第二种比较复杂,读者可以自己选择其中一种。

本文首发于“微博平台架构”微信公众号,发布时有少量的文字润色和调整。

关于作者

卫向军( @卫向军 _ 微博),毕业于北京邮电大学,现任微博平台架构师,先后在微软、金山云、新浪微博从事技术研发工作,专注于系统架构设计、音视频通讯系统、分布式文件系统和数据挖掘等领域。


感谢臧秀涛对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2015-02-07 08:378176

评论

发布
暂无评论
发现更多内容

关于 Intel 在 micro-vm 快速启动的探索及实例演示 | 第 36-38 期

OpenAnolis小助手

云原生 cpu 开源社区 sig 龙蜥大讲堂

第01篇:手写JavaRPC框架之思路分析

西魏陶渊明

Java RPC RPC 协议实现原理 RPC框架

C++面向对象封装特性的实例分析与应用扩展(二)

CtrlX

c c++ 面向对象 后端 8月月更

如何面向对象编程?程序员:我也要先有"对象"啊

华为云开发者联盟

Python 编程 后端 开发

一加Ace值得买吗?用实力诠释性能的强大

Geek_8a195c

收藏-即时通讯(IM)开源项目OpenIM-功能手册

Geek_1ef48b

华为ECS云服务器上安装Docker及部署Redis详细教程【华为云至简致远】

科技怪咖

【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取

合合技术团队

自然语言处理 深度学习 AI OCR 信息抽取

一键进入华为云会议,长期免费值得所有开发团队有一套【华为云至简致远】

科技怪咖

开源一夏 | 十分钟 教你IDEA 远程debugger SpringBoot项目

Geek_32c728

开源 8月月更

化算力为战力:宁夏中卫的数字化转型启示录

脑极体

CC2530_ZigBee+华为云IOT:设计一套属于自己的冷链采集系统

华为云开发者联盟

IoT 华为云 冷链

基于云ModelArts的PPO算法玩“超级马里奥兄弟”【华为云至简致远】

科技怪咖

【技术白皮书】第二章:OCR智能文字识别回顾——自然语言文本发展历程

合合技术团队

深度学习 AI OCR 自然语言 信息抽取

云GPU如何安装和启动VNC远程桌面服务?

恒源云

人工智能 深度学习 gpu

微信小程序分享功能

源字节1号

软件开发

亚马逊云科技 Build On 2022 - AIot 第二季物联网专场实验心得

指剑

AWS AIOT 签约计划第三季 8月月更

GaussDB(for Redis)安全性相关设置体验【华为云至简致远】

科技怪咖

理想汽车内部推荐

程序员阿杜

揭秘5名运维如何轻松管理数亿级流量系统

York

云计算 DevOps 云原生 数字化转型 开发与运维

盘点在线帮助中心对企业能够起到的作用

Baklib

如何避免无效的沟通

观测云

企业如何选择低代码开发平台

力软低代码开发平台

云图说丨初识华为云微服务引擎CSE

华为云开发者联盟

微服务 云服务 华为云

动态接口比例性能测试实践

FunTester

七日算法先导(三)—— 冒泡排序,选择排序

工程师日月

8月月更

Spring Security

武师叔

8月月更

5000元价位高性能轻薄本标杆 华硕无双高颜能打

科技热闻

云渲染的优势与劣势

Finovy Cloud

云渲染 云渲染农场

友宏医疗与Actxa签署Pre-M Diabetes TM 战略合作协议

联营汇聚

AI+BI+可视化,Sugar BI 架构深度剖析

Baidu AICLOUD

大数据 数据分析 BI 可视化数据

使用2-3法则设计分布式数据访问层_语言 & 开发_卫向军_InfoQ精选文章