【ArchSummit架构师峰会】探讨数据与人工智能相互驱动的关系>>> 了解详情
写点什么

TensorFlow 2.0 迁移学习实践指南

  • 2019-12-05
  • 本文字数:10948 字

    阅读完需:约 36 分钟

TensorFlow 2.0迁移学习实践指南


阅读深度学习论文总是很有趣,也很有教育意义,特别是当这些论文和你现在做的项目属于同一领域时更是如此。但是,这些论文包含的架构和解决方案通常很难训练,特别是当你想去尝试他们的方法时,比如说 ILSCVR(ImageNet Large Scale Visual Recognition)竞赛中的一些获奖者的方法。我记得我在读 VGG16 的论文时就在想“这个方法很酷,但是我的 GPU 跑这个网络时都快挂了。”为了能轻松使用这些网络,Tensorflow 2 提供了大量的预训练模型,你可以很快用上它们。而本文,我们将介绍怎样通过一些有名的 CNN(Convolutional Neural Network)架构来训练这些论文里介绍的新的神经网络模型。


这时你可能会问“预训练模型是什么?”。本质上来说,预训练模型是之前在大数据集上已经训练好并保存下来的模型,比如说在 ImageNet 数据集上训练的模型。这些模型可以在 tensorflow.keras.applications 模块里找到。有两种方式使用这些预训练模型,你可以直接使用它们,或者通过迁移学习使用它们。由于大数据集通常用于某种全局解,所以你可以让预训练模型定制化,使其特别针对性地解决某个特定的问题。通过这个方式,你可以在训练时利用一些最有名的神经网络,不会损失太多的训练时间和计算资源。另外,你可以选定网络里的一些层,修改这些层的行为,实现这些模型的微调。我们在后面的文章里会讲到这一点。

架构

在本文中,我们使用 3 个预训练模型来解决分类问题的一个例子:VGG16、GoogLeNet(Inception)和 ResNet。这每一个架构都赢得了当年的 ILSCVR 竞赛。2014 年,VGG16 与 GooLeNet 有着相同的最好成绩,而 ResNet 赢得了 2015 年的竞赛。这些模型是 Tensorflow 2 中 tensorflow.keras.applications 模块的一部分。让我们深入探究一下这几个模型。


我们首先看一下 VGG16 这个架构。它是一个大型的卷积神经网络,由 K. Simonyan 和 A. Zisserman 在“Very Deep Convolutional Networks for Large-Scale Image Recognition”这篇论文里提出。这个网络在 ImageNet 数据集上达到了 92.7%的 top-5 测试精确度。但是,训练这个网络需要好几周。下图是这个模型的高层概览:



VGG16 架构


GoogLeNet 也被称为 Inception,这是因为它使用了两个概念:1x1 卷积和 Inception 模块。第一个概念中,1x1 卷积用于降维的模块。通过降维,计算量也会减少,这也就意味着网络的深度和宽度可以增加了。GooLeNet 使用了 Inception 模块,每个卷积层的大小都不相同。



带有降维功能的 Inception 模块


如图所示,1x1 卷积层、3x3 卷积层、5x5 卷积层和 3x3 最大池化层操作组合在了一起,然后这些层的运行结果会在输出节点处堆叠在一起。GooLeNet 总共有 22 层,看起来像下面这样:



本文中,我们要使用的最后一个网络架构是残差网络,或者称作 ResNet。前面提到的网络的问题在于它们太深了,它们有太多层,导致很难训练(因为梯度消失)。所以,ResNet 使用所谓的“identity shortcut connection”(或者称作残差模块)来解决这个问题。



带有降维和不带降维的残差模块


本质上来讲,ResNet 沿用了 VGG 的 3x3 卷积层的设计,每层卷积后面都有一个 Batch Normalization 层和 ReLu 激活函数。但是,差异点在于我们的 ResNet 在最后一个 ReLu 前插入了 input 节点。另一个变种是,输入值(input value)传入了 1x1 卷积层。

数据集

在本文中,我们使用“Cats vs Dogs”的数据集。这个数据集包含了 23,262 张猫和狗的图像。



你可能注意到了,这些照片没有归一化,它们的大小是不一样的。但是非常棒的一点是,你可以在 Tensorflow Datasets 中获取这个数据集。所以,确保你的环境里安装了 Tensorflow Dataset。


pip install tensorflow-dataset
复制代码


和这个库中的其他数据集不同,这个数据集没有划分成训练集和测试集,所以我们需要自己对这两类数据集做个区分。你可以在这里找到这个数据集的更多信息。

实现

这个实现分成了几个部分。首先,我们实现了一个类,其负责载入数据和准备数据。然后,我们导入预训练模型,构建一个用于修改最顶端的几层网络。最后,我们把训练过程运行起来,并进行评估。当然,在这之前,我们必须导入一些代码库,定义一些全局常量:


import numpy as npimport matplotlib.pyplot as plt
import tensorflow as tfimport tensorflow_datasets as tfds
IMG_SIZE = 160BATCH_SIZE = 32SHUFFLE_SIZE = 1000IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3)
复制代码


好,让我们仔细来看下实现!

数据载入器

这个类负责载入数据和准备数据,用于后续的数据处理。以下是这个类的实现:


class DataLoader(object):    def __init__(self, image_size, batch_size):                self.image_size = image_size        self.batch_size = batch_size                # 80% train data, 10% validation data, 10% test data        split_weights = (8, 1, 1)        splits = tfds.Split.TRAIN.subsplit(weighted=split_weights)                (self.train_data_raw, self.validation_data_raw, self.test_data_raw), self.metadata = tfds.load(            'cats_vs_dogs', split=list(splits),            with_info=True, as_supervised=True)                # Get the number of train examples        self.num_train_examples = self.metadata.splits['train'].num_examples*80/100        self.get_label_name = self.metadata.features['label'].int2str                # Pre-process data        self._prepare_data()        self._prepare_batches()            # Resize all images to image_size x image_size    def _prepare_data(self):        self.train_data = self.train_data_raw.map(self._resize_sample)        self.validation_data = self.validation_data_raw.map(self._resize_sample)        self.test_data = self.test_data_raw.map(self._resize_sample)        # Resize one image to image_size x image_size    def _resize_sample(self, image, label):        image = tf.cast(image, tf.float32)        image = (image/127.5) - 1        image = tf.image.resize(image, (self.image_size, self.image_size))        return image, label        def _prepare_batches(self):        self.train_batches = self.train_data.shuffle(1000).batch(self.batch_size)        self.validation_batches = self.validation_data.batch(self.batch_size)        self.test_batches = self.test_data.batch(self.batch_size)       # Get defined number of  not processed images    def get_random_raw_images(self, num_of_images):        random_train_raw_data = self.train_data_raw.shuffle(1000)        return random_train_raw_data.take(num_of_images)
复制代码


这个类实现了很多功能,它实现了很多“public”方法


  • _prepare_data:内部方法,用于缩放和归一化数据集里的图像。构造函数需要用到该函数。

  • _resize_sample:内部方法,用于缩放单张图像。

  • _prepare_batches:内部方法,用于将图像打包创建为 batches。创建 train_batches、validation_batches 和 test_batches,分别用于训练、评估过程。

  • get_random_raw_images:这个方法用于从原始的、没有经过处理的数据中随机获取固定数量的图像。


但是,这个类的主要功能还是在构造函数中完成的。让我们仔细看看这个类的构造函数。


def __init__(self, image_size, batch_size):
self.image_size = image_size self.batch_size = batch_size
# 80% train data, 10% validation data, 10% test data split_weights = (8, 1, 1) splits = tfds.Split.TRAIN.subsplit(weighted=split_weights)
(self.train_data_raw, self.validation_data_raw, self.test_data_raw), self.metadata = tfds.load( 'cats_vs_dogs', split=list(splits), with_info=True, as_supervised=True)
# Get the number of train examples self.num_train_examples = self.metadata.splits['train'].num_examples*80/100 self.get_label_name = self.metadata.features['label'].int2str
# Pre-process data self._prepare_data() self._prepare_batches()
复制代码


首先我们通过传入参数定义了图像大小和 batch 大小。然后,由于该数据集本身没有区分训练集和测试集,我们通过划分权值对数据进行划分。这真是 Tensorflow Dataset 引入的非常棒的功能,因为我们可以留在 Tensorflow 生态系统中做这件事,我们不用引入其他的库(比如 Pandas 或者 Scikit Learn)。一旦我们执行了数据划分,我们就开始计算训练样本数量,然后调用辅助函数来为训练准备数据。在这之后,我们需要做的仅仅是实例化这个类的对象,然后载入数据即可。


data_loader = DataLoader(IMG_SIZE, BATCH_SIZE)
plt.figure(figsize=(10, 8))i = 0for img, label in data_loader.get_random_raw_images(20): plt.subplot(4, 5, i+1) plt.imshow(img) plt.title("{} - {}".format(data_loader.get_label_name(label), img.shape)) plt.xticks([]) plt.yticks([]) i += 1plt.tight_layout()plt.show()
复制代码


以下是输出结果:


基础模型 & Wrapper

下一个步骤就是载入预训练模型了。我们前面提到过,这些模型位于 tensorflow.kearas.applications。我们可以用下面的语句直接载入它们:


vgg16_base = tf.keras.applications.VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')googlenet_base = tf.keras.applications.InceptionV3(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')resnet_base = tf.keras.applications.ResNet101V2(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')
复制代码


这段代码就是我们创建上述三种网络结构基础模型的方式。注意,每个模型构造函数的 include_top 参数传入的是 false。这意味着这些模型是用于提取特征的。我们一旦创建了这些模型,我们就需要修改这些模型顶部的网络层,使之适用于我们的具体问题。我们使用 Wrapper 类来完成这个步骤。这个类接收预训练模型,然后添加一个 Global Average Polling Layer 和一个 Dense Layer。本质上,这最后的 Dense Layer 会用于我们的二分类问题(猫或狗)。Wrapper 类把所有这些元素都放到了一起,放在了同一个模型中。


class Wrapper(tf.keras.Model):    def __init__(self, base_model):        super(Wrapper, self).__init__()                self.base_model = base_model        self.average_pooling_layer = tf.keras.layers.GlobalAveragePooling2D()        self.output_layer = tf.keras.layers.Dense(1)            def call(self, inputs):        x = self.base_model(inputs)        x = self.average_pooling_layer(x)        output = self.output_layer(x)        return output
复制代码


然后我们就可以创建 Cats vs Dogs 分类问题的模型了,并且编译这个模型。


base_learning_rate = 0.0001
vgg16_base.trainable = Falsevgg16 = Wrapper(vgg16_base)vgg16.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
googlenet_base.trainable = Falsegooglenet = Wrapper(googlenet_base)googlenet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
resnet_base.trainable = Falseresnet = Wrapper(resnet_base)resnet.compile(optimizer=tf.keras.optimizers.RMSprop(lr=base_learning_rate), loss='binary_crossentropy', metrics=['accuracy'])
复制代码


注意,我们标记了基础模型是不参与训练的,这意味着在训练过程中,我们只会训练新添加到顶部的网络层,而在网络底部的权重值不会发生变化。

训练

在我们开始整个训练过程之前,让我们思考一下,这些模型的大部头其实已经被训练过了。所以,我们可以执行评估过程来看看评估结果如何:


steps_per_epoch = round(data_loader.num_train_examples)//BATCH_SIZEvalidation_steps = 20
loss1, accuracy1 = vgg16.evaluate(data_loader.validation_batches, steps = 20)loss2, accuracy2 = googlenet.evaluate(data_loader.validation_batches, steps = 20)loss3, accuracy3 = resnet.evaluate(data_loader.validation_batches, steps = 20)
print("--------VGG16---------")print("Initial loss: {:.2f}".format(loss1))print("Initial accuracy: {:.2f}".format(accuracy1))print("---------------------------")
print("--------GoogLeNet---------")print("Initial loss: {:.2f}".format(loss2))print("Initial accuracy: {:.2f}".format(accuracy2))print("---------------------------")
print("--------ResNet---------")print("Initial loss: {:.2f}".format(loss3))print("Initial accuracy: {:.2f}".format(accuracy3))print("---------------------------")
复制代码


有意思的是,这些模型在没有预先训练的情况下,我们得到的结果也还过得去(50%的精确度):


———VGG16———Initial loss: 5.30Initial accuracy: 0.51—————————-
——GoogLeNet—–Initial loss: 7.21Initial accuracy: 0.51—————————-
——–ResNet———Initial loss: 6.01Initial accuracy: 0.51—————————-
复制代码


把 50%作为训练的起点已经挺好的了。所以,就让我们把训练过程跑起来吧,看看我们是否能得到更好的结果。首先,我们训练 VGG16:


history = vgg16.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


训练过程历史数据显示大致如下:



VGG16 的训练过程历史数据


然后我们可以训练 GoogLeNet。


history = googlenet.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


这个网络训练过程历史数据如下:



GoogLeNet 的训练过程历史数据


最后是 ResNet 的训练:


history = resnet.fit(data_loader.train_batches,                    epochs=10,                    validation_data=data_loader.validation_batches)
复制代码


以下是 ResNet 训练过程历史数据如下:



ResNet 的训练过程历史数据


由于我们只训练了顶部的几层网络,而不是整个网络,所以训练这三个模型只用了几个小时,而不是几个星期。

评估

我们看到在训练开始前,我们已经有了 50%左右的精确度。让我们来看下训练后是什么情况:


loss1, accuracy1 = vgg16.evaluate(data_loader.test_batches, steps = 20)loss2, accuracy2 = googlenet.evaluate(data_loader.test_batches, steps = 20)loss3, accuracy3 = resnet.evaluate(data_loader.test_batches, steps = 20)
print("--------VGG16---------")print("Loss: {:.2f}".format(loss1))print("Accuracy: {:.2f}".format(accuracy1))print("---------------------------")
print("--------GoogLeNet---------")print("Loss: {:.2f}".format(loss2))print("Accuracy: {:.2f}".format(accuracy2))print("---------------------------")
print("--------ResNet---------")print("Loss: {:.2f}".format(loss3))print("Accuracy: {:.2f}".format(accuracy3))print("---------------------------")
复制代码


结果如下:


——–VGG16———Loss: 0.25Accuracy: 0.93—————————
——–GoogLeNet———Loss: 0.54Accuracy: 0.95———————————–ResNet———Loss: 0.40Accuracy: 0.97—————————
复制代码


我们可以看到这三个模型的结果都相当好,其中 ResNet 效果最好,精确度高达 97%。

结论

在本文中,我们演示了怎样使用 Tensorflow 进行迁移学习。我们创建了一个试验场,在其中可以尝试不同的数据预训练架构,并且在几个小时内就能得到较好的结果。在我们的例子里,我们使用了三个很有名的卷积架构,快速将其修改用于具体的问题。在下篇文章中,我们将微调这些模型,来看看我们是否能得到更好的结果。


原文链接:


https://rubikscode.net/2019/11/11/transfer-learning-with-tensorflow-2/


公众号推荐:

跳进 AI 的奇妙世界,一起探索未来工作的新风貌!想要深入了解 AI 如何成为产业创新的新引擎?好奇哪些城市正成为 AI 人才的新磁场?《中国生成式 AI 开发者洞察 2024》由 InfoQ 研究中心精心打造,为你深度解锁生成式 AI 领域的最新开发者动态。无论你是资深研发者,还是对生成式 AI 充满好奇的新手,这份报告都是你不可错过的知识宝典。欢迎大家扫码关注「AI前线」公众号,回复「开发者洞察」领取。

2019-12-05 08:042845
用户头像
蔡芳芳 InfoQ主编

发布了 781 篇内容, 共 494.3 次阅读, 收获喜欢 2748 次。

关注

评论

发布
暂无评论
发现更多内容

PaaS平台应用趋势

元年技术洞察

AI 数据湖 PaaS 容器服务 微服务化

大数据开发培训怎么选?

小谷哥

大数据开发培训学习哪家机构好

小谷哥

react-Suspense工作原理分析

夏天的味道123

React

一文详解如何用MySQL/Redis/ZooKeeper实现分布式锁

一灯架构

Java 10月月更

彻底搞懂React-hook链表构建原理

夏天的味道123

React

web前端开发课程培训哪家好

小谷哥

微服务——想说爱你不容易

为自己带盐

个人感想

没想到!我在简历上写了“精通MySQL”,阿里面试官跟我死磕后就给我发了高薪offer

程序知音

Java MySQL 数据库 后端技术

不知道如何分库分表,看完这篇文章,轻松应对工作面试

一灯架构

Java 10月月更

小程序技术可助力智慧医疗企业破茧突围?

Speedoooo

小程序 小程序容器 小程序化

React组件设计模式-纯组件,函数组件,高阶组件

xiaofeng

React

化解企业云端协同难题,英特尔超能云终端2.0版本为市场注入全新活力

科技之家

大厂被裁,疫情之下,一个offer都没,测试人如何破局?

千锋IT教育

细说React组件性能优化

xiaofeng

React

奋楫十年天翼云以科技创新刷新“中国速度”

天翼云开发者社区

前端开发的程序员还有前途吗

小谷哥

java开发技术培训费用是多少

小谷哥

技术分享| 消息队列Kafka群集部署

anyRTC开发者

nginx kafka zookeeper 分布式 消息

React组件通信

xiaofeng

React

升级到React-Router-v6

xiaofeng

React

什么是无代码?企业为什么要用无代码进行数字化转型?

优秀

数字化转型 无代码

专访“MySQL 之父”:我曾创造 MySQL,也将颠覆 MySQL

博文视点Broadview

方舟数据中台,打造企业数据能力组件中心

元年技术洞察

数据中台 低代码 数字化转型 企业自驱力

TCP:当初取代NCP,如今害怕被取代

C++后台开发

后台开发 网络协议 TCP/IP 后端开发 TCP协议

详解React的Transition工作原理原理

夏天的味道123

React

研发分享 | StoneDB 如何给 Tianmu 引擎增加 delete 功能 #1 调研之旅

StoneDB

数据库 HTAP StoneDB 10月月更 企业号十月PK榜

音频功率放大电路(使用过的语音方案电路记录)

矜辰所致

10月月更 音频功率放大电路 语言模块

手把手入门 Vue教学

MobTech袤博科技

html Vue

CEF | CEF浏览器客户端功能详解

YOLO.

qt 10月月更 C++

玩转云端| 看天翼云iBox智能盒子如何实现边缘侧的“神机妙算”

天翼云开发者社区

TensorFlow 2.0迁移学习实践指南_语言 & 开发_Rubikscode_InfoQ精选文章