写点什么

DeepMind 开源最新奥数级几何推理模型,奥数冠军:它像人一样懂得规则

  • 2024-01-22
    北京
  • 本文字数:2715 字

    阅读完需:约 9 分钟

大小:1.26M时长:07:20
DeepMind 开源最新奥数级几何推理模型,奥数冠军:它像人一样懂得规则

在日前发表在《自然》杂志的论文中,谷歌 DeepMind 介绍了 AlphaGeometry。作为一套 AI 系统,它能够以比肩人类奥数冠军的水平解决复杂的几何问题。

 

在根据 2000 年至 2022 年奥数赛制整理的 30 道几何题基准测试集(IMO-AG-30)中,AlphaGeometry 在标准比赛时间内成功解决 25 道,已经非常接近人类冠军的平均得分。相比之下,此前最先进的 AI 系统(即吴文俊提出的“吴氏方法”)也只能解决 10 道题,而人类冠军则平均解决 25.9 道题。这标志着 AI 性能的又一次突破。



由于缺乏推理技能与训练数据,AI 系统往往难以攻克数学中复杂的几何问题。AlphaGeometry 系统将神经语言模型的预测能力与规则约束推导引擎相结合,以协同方式寻求正确答案。通过开发一种能够生成大量合成训练数据(包含 1 亿个独特示例)的新方法,团队得以在无需任何人类演示的情况下训练 AlphaGeometry,有效回避了数据瓶颈。

 

目前,DeepMind 已经开源 AlphaGeometry 代码及模型,希望配合合成数据生成和训练过程中的其他工具和方法,共同在数学、科学和 AI 领域开创新的可能性。

 

开源地址:https://github.com/google-deepmind/alphageometry

 

采用神经符号方法

 

AlphaGeometry 是一套神经符号系统,由神经语言模型加符号推导引擎组成,希望两相结合以寻求对复杂几何定理的证明。这类似于“快、慢思考相结合”的理念,一个系统提供快速、“直观”的想法,另一系统则做出更加深思熟虑的理性决策。

 

由于语言模型更擅长发现数据中的一般模式和关系,所以能够快速预测可能有用的潜在构造,但却往往缺乏严格推理并解释其决策的能力。另一方面,符号推导引擎则基于形式逻辑,依靠明确的规则来得出结论。后者更理性、可解释性更强,但往往比较“缓慢”且不够灵活——这一点在单独处理大型复杂问题时体现得尤其明显。

 

AlphaGeometry 的语言模型会引导其符号推导引擎为几何问题寻求可能的解。

 

奥数几何问题的题干大多基于图表,需要添加新的几何构造才能解决,例如点、线或圆。AlphaGeometry 的语言模型可以从无数种可能性中预测添加哪些新构造更有助于解题。这些线索能够填补空白,引导符号引擎对图表做进一步推论并逐步趋近正确答案。

 


AlphaGeometry 解决的一个简单问题:给定问题图及其定理前提(左),AlphaGeometry(中)首先使用符号引擎来推导关于图的新表述,直到找出正确解或用尽新表述。

 

如果找不到可行的解,AlphaGeometry 语言模型会添加一种可能有用的构造(蓝色部分,即辅助线)为符号引擎开辟新的推导路径。整个循环不断重复,直到找到正确解为止(右)。在此示例中,只需要一种新构造(一条辅助线)。

 


AlphaGeometry 解决奥数问题:2015 年国际奥数竞赛题(左)与 AlphaGeometry 的精简求解过程(右)。蓝色部分是添加的构造。AlphaGeometry 的解共涉及 109 个逻辑步骤。

 

查看完整解题过程:

https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphageometry-an-olympiad-level-ai-system-for-geometry /AlphaGeometry solution.pdf

 

生成 1 亿个合成数据示例

 

几何求解的基础是对空间、距离、形状和相对位置的正确理解,也是艺术、建筑、工程和诸多其他领域的理论基础。人类可以用纸和笔来学习几何知识,观察图表并运用现有知识来发现新的、更复杂的几何属性及关系。

 

而该系统的合成数据生成方法,也大规模模拟了这种知识构建过程,使 DeepMind 得以从头开始训练 AlphaGeometry、全程无需任何人类演示。

 

该系统利用高度并行计算,首先生成十亿个随机几何对象图,并详尽推导出图中每个点和线之间的所有关系。AlphaGeometry 能够找出各图表中所包含的一切证明,而后进一步探索需要哪些附加构造(如果需要)来得出这些证明。DeepMind 把这个过程称为“符号推导与回溯”。

 


AlphaGeometry 所生成合成数据的视觉表示

 

这个庞大的数据波经过过滤以排除类似的示例,最终产生了包含 1 亿个不同难度独特示例的最终训练数据集,其中有 900 万个都添加了新构造。有了这么多通过添加新构造支持证明的例子,AlphaGeometry 语言模型就能在遇到新题时提出很好的辅助构造建议。

 

利用 AI 进行数学推导

 

AlphaGeometry 提出的每一道奥数题解法,都经过计算机检查和验证。DeepMind 还将结果与之前的 AI 方法以及人类选手在奥赛中的表现做出比较。此外,数学教练、前奥数竞赛 金牌得主 Evan Chen 也帮助对 AlphaGeometry 的解题思路进行评估。

 

Chen 表示,“AlphaGeometry 的输出令人印象深刻,因为答案既可验证又相当简洁。以往,AI 对于竞赛问题的证明存在一定偶然性(结果虽然正确,但需要人工检查)。但 AlphaGeometry 不存在这个弱点:其求解过程始终拥有机器可验证的结构,同时也保持着良好的人类可读性。”

 

“说到机器求解数学题,人们首先想到的往往是那种通过强大坐标系解决几何问题的计算机程序、特别是令人头皮发麻的繁琐代数计算。但 AlphaGeometry 不是这样,它跟人类学生一样懂得使用角度和相似三角形等经典几何规则。”Chen 说道。

 

但由于奥数竞赛总计包含六道问题,其中往往只有两道与几何相关,因此 AlphaGeometry 只能解决竞赛中三分之一的题目。尽管如此,单凭强大的几何求解能力就已经让它成为全球首个能够在 2000 年和 2015 年竞赛中取得铜牌成绩的 AI 模型。

 

而如果将题目限制在几何之内,那么这套系统的成绩几乎可以比肩奥数竞赛的金牌得主。不过 DeepMind 的目标远不止于此,他们还希望推动下一代 AI 系统踏上推理能力的新高峰。

 

考虑到大规模合成数据在从零开始训练 AI 系统方面的广泛潜力,这种方法甚至有望驱动未来 AI 系统在发现数学及其他领域新知识方面做出贡献。

 

结束语

 

“目前,AI 领域的研究人员正尝试从奥数级几何问题入手。我个人对此深表赞同,整个求解过程有点类似国际象棋,即将每一步中的合理操作数量控制在有限范围之内。但我仍然对 AI 系统的实际表现感到惊喜,也为这项令人印象深刻的成就而激动不已。”菲尔兹奖得主兼奥林匹克数学竞赛金牌得主 NGÔ BẢO CHÂU 说道。

 

AlphaGeometry 以 Google DeepMind 和谷歌研究院的工作成果为基础,开创了 AI 数学推导的先河,应用范围涵盖探索纯数学之美、以及使用语言模型解决数学和科学问题。最近,DeepMind 还推出了 FunSearch,首次使用大语言模型在开放式数学科学问题中取得发现。

 

DeepMind 表示,自己的长期目标仍然是构建起拥有跨数学领域泛化能力的 AI 系统,研究通用 AI 系统所必需的复杂问题求解与推理能力,最终帮助人类开拓知识的新前沿。

 

通过 AlphaGeometry,DeepMind 展示了 AI 系统不断增长的逻辑推理能力以及发现/验证新知识的能力。在迈向更先进、更具通用性 AI 系统的道路上,解决奥数级几何问题标志着深度数学推理的又一重大里程碑。

 

相关链接:

https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/

 

2024-01-22 10:275926

评论

发布
暂无评论
发现更多内容

如何准备好一场vue面试

bb_xiaxia1998

Vue

高效数据通道支撑生产情况实时分析与可视化|工业4.0智慧工厂

EMQ映云科技

物联网 IoT 数据可视化 11月月更 云边协同

在Dubbo中,模板方法模式 用得真6

小小怪下士

Java 程序员 dubbo 阿里

HDC 2022精彩继续,多重亮点进来看!

HarmonyOS开发者

HarmonyOS

AI 模型编译器 MegCC 开源,解决推理引擎体积问题

MegEngineBot

深度学习 开源 MegEngine MegCC AI 模型编译器

EMQ荣获“2022中国移动创客马拉松OneOS物联网专题赛”三等奖

EMQ映云科技

物联网 IoT emqx 云边协同 车路协同

谈谈vue面试那些题

bb_xiaxia1998

Vue

云原生系列四:Yelp 如何在 Kubernetes 上运行 Kafka

叶秋学长

kafka Kubernetes 11月月更 Yelp

代码质量与安全 | 想在发布竞赛中胜出?Sonar来帮你

龙智—DevSecOps解决方案

代码质量 代码安全

万字详解JVM,让你一文吃透

华为云开发者联盟

开发 华为云 企业号十月 PK 榜

python中私有成员和公有成员

乔乔

11月月更

DevUI开源经验分享:从0到1开始运营你的开源项目

华为云开发者联盟

开源 华为云 企业号十月 PK 榜

React源码解读之更新的创建

flyzz177

React

谈谈企业级前端应用中客户端渲染和服务器端渲染的区别

汪子熙

前端开发 SSR SAP Spartacus 11月月更

docker-compose下的java应用启动顺序两部曲之一:问题分析

程序员欣宸

Java Docker Docker-compose 11月月更

vue面试之Composition-API响应式包装对象原理

bb_xiaxia1998

Vue

梁胜博士:软件供应链安全两手抓,既要安全左移也要全链路防护丨活动回顾

SEAL安全

DevOps DevSecOps 软件供应链 安全左移 软件供应链安全

react hook 源码完全解读

flyzz177

React

什么是 HTML 语义化,有什么好处

肥晨

11月月更 HTML语义化 语义化标签

我把分布式音乐播放器适配了Stage模型

OpenHarmony开发者

OpenHarmony

专业移动办公解决方案!远程控制软件RayLink内测火热进行中!

RayLink远程工具

远程控制软件 远程办公软件 远控软件 远程桌面连接 RayLink

2022年中国汽车OTA行业发展洞察

易观分析

汽车 OTA

vue这些原理你都知道吗?(面试版)

bb_xiaxia1998

Vue

vue2项目搭建-使用VUE CLI3.0搭建项目vue2+scss+element简易版

肥晨

脚手架 11月月更 vue2项目搭建

面试官最喜欢问的几个react相关问题

beifeng1996

React

认证升级 | 秒云再次获评软件企业认证

MIAOYUN

双软认证 软件企业认证 软件产品认证

业界首个!快手提出亿级别多模态短视频百科体系——快知Kuaipedia

Geek老T

短视频 快手 泛知识

SAP 电商云的 Spartacus Storefront 如何配置多个 JavaScript Application

汪子熙

angular SAP commerce 电商云 11月月更

React源码分析7-state计算流程和优先级

goClient1992

React

React源码分析6-hooks源码

goClient1992

React

软件测试面试真题 |你用过哪些用例设计方法?

测试人

软件测试 面试题 测试用例

DeepMind 开源最新奥数级几何推理模型,奥数冠军:它像人一样懂得规则_AI&大模型_核子可乐_InfoQ精选文章