写点什么

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

阿里巴巴

  • 2023-06-28
    北京
  • 本文字数:1720 字

    阅读完需:约 6 分钟

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

大语言模型(LLM)是当前自然语言处理领域最核心的技术,以 GPT-4 为代表的大语言模型展现出了类人的学习能力。其中,情境学习(In-context Learning)是大语言模型最神秘的能力之一。如下图所示,在这种情境学习的范式下,大模型无需更新任何参数,仅依赖几个示例样本(demonstrations)就可以学习新任务,执行新样本的预测。



得益于这种范式的存在,使得大模型可以仅通过修改指令(prompt)和示例 (demonstrations)就在某个具体任务上达到不错的效果,然而当前的情境学习仅通过输入一次示例的方式来进行任务的归纳与推理,存在很大的局限。首先,这种单轮的策略与人类类比学习的决策过程并不一致。

 

在认知学中,人类通常通过迭代式的思维过程(例如,分析示例、反思示例和形成抽象概念)执行类比学习。可以考虑让大模型通过“思考更长时间”或者“多次思考”,来提升情境学习的能力。其次,一些相关工作指出,情境学习与传统神经网络训练的梯度下降有潜在的联系,一次大模型前向的过程完成了一次隐式的梯度下降,可以看作执行了一次训练。这进一步表明,可以通过多次(迭代)前向训练演示来提高情境学习的效果,让大模型和人类一样,拥有深度思考的过程。



阿里首创前向训练框架


为此,阿里研究团队在《Iterative Forward Tuning Boosts In-context Learning in Language Models》论文中率先提出了一个新的大模型情境学习框架——Deep-Thinking。


论文:https://arxiv.org/abs/2305.13016

代码: https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/deep-thinking

Demo: https://modelscope.cn/studios/huybery/deep-thinking/summary

 

Deep-Thinking 与传统情境学习不同,它分为两个阶段。第一个阶段为思考阶段,仅将示例作为大模型的输入,然后通过多次迭代来让大模型进行前向“训练/思考”,模拟人类不断地观察与学习示例样本。为了做到前向训练,研究团队借助 self-attention 中的 Key, Value 矩阵作为一种“元梯度”。

 

具体来说,需要执行多个步骤优化过程。在某一次具体的优化过程中,研究团队改造 self-attention 的前向机制,对  Key, Value 矩阵执行了更新 (update) 与 合并 (concat) 操作。更新操作通过当前步骤的元梯度与历史累积到的元梯度进行积累,产生新的元梯度。而合并操作将元梯度进行合并,让网络更深层地表示受到元梯度的增益。需要强调的是,这个过程不依赖反向传播,所以能够大大地降低大模型的训练的成本。第二个阶段为推理阶段,输入待预测的样本与训练阶段产生的最终元梯度,最终执行预测。



Deep-Thinking 拥有两个优势,一方面通过第一阶段的思考可以有效提升下游任务的效果,另一方面,在第二阶段预测时仅需要输入预测的样本与第一阶段学习的产物(K,V 矩阵),无需输入大量的自然语言示例,可以有效节约显存并提升推理速度。


效果


为了评估 Deep-Thinking 相比传统情景学习的优势,该团队评测四种 LLM 的不同尺寸,共 20 个模型在 10 个数据集上的效果,发现都有较好的提升,在某些情况下甚至能得到几十个点的相对提升。



除了定量的评估外,该团队还执行了一些有趣的分析,Deep-thinking 的优化过程和传统的梯度下降优化展现出了一系列有趣的现象:首先,Deep-thinking 也存在类似过拟合的现象,如果迭代过程过多,将会导致效果下降,可以通过引入小规模的验证集来选择合适的迭代次数,这与传统优化中的 Epoch 概念类似;其次,Deep-thinking 的梯度范式也呈现出了与梯度下降相同的趋势,比如更浅的层收敛更快,对学习率敏感等。



展望


传统的模型优化依赖于反向传播算法,但这种方法需要大量的计算资源和庞大的数据集,使得大模型的训练与微调成本非常高昂,成为大模型落地的阻碍之一。

 

而阿里研究团队提出的 Deep-thinking 是一种迭代式的前向训练框架,摒弃了反向传播的依赖,这将允许用户和企业在具体的任务上低成本的优化大模型效果。企业往往需要保护用户数据的安全性,但同时也需要让模型具备针对特定任务的学习能力。利用 Deep-thinking ,企业可以在不共享大量数据的前提下,根据自身需求快速训练和优化专属模型。这对于提高模型的个性化适应性和隐私保护具有重要意义,这项技术有潜力成为大模型落地的最佳实践。

2023-06-28 17:334957
用户头像
赵钰莹 极客邦科技 总编辑

发布了 934 篇内容, 共 722.8 次阅读, 收获喜欢 2717 次。

关注

评论

发布
暂无评论
发现更多内容

架构师训练营大作业

菜青虫

week12-作业一

未来已来

LeetCode题解:33. 搜索旋转排序数组,二分查找,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

Springboot+Netty+Websocket实现消息推送实例

Java架构师迁哥

张弛之间,皆是生活

boshi

随笔 七日更

第十一周命题作业

cc

第十一周学习心得

cc

【LeetCode】可获得的最大点数

Albert

算法 LeetCode 2月春节不断更

week12-根据当周学习情况,完成一篇学习总结

未来已来

week-13-作业一

未来已来

AI窥人(一):为什么人类热衷“过度投射”?

脑极体

并发编程系列:并发编程基础

程序员架构进阶

架构 JVM 七日更 28天写作 2月春节不断更

使用 Tye 辅助开发 k8s 应用竟如此简单(二)

newbe36524

微服务 k8s dotnet 服务发现

探寻内部类的奥秘(下)

后台技术汇

2月春节不断更

日记 2021年2月6日(周六)

Changing Lin

个人感悟 2月春节不断更

MyBatis专栏 - 一级缓存

小马哥

Java mybatis 七日更 2月春节不断更

基于Docker的大数据开发环境 - HDP Sandbox

大数志

大数据 hadoop spark

民办二本程序员阿里、百度、平安等五厂面经,5份offer(含真题)

Java 编程 面试

Java线上故障解决方案

Java 架构

《王阳明一切心法》读书随笔

BigYoung

读书笔记 28天写作 2月春节不断更 王阳明

架构师训练营大作业(二)

花果山

架构师训练营第2期

WiFi 空口抓包工具 --- OmniPeek

Linux Lab 进阶: Qemu 模拟器 & Toolchain 工具链

贾献华

Linux Tool Linux Kenel qemu Toolchain

上古神器 sed 教程详解,小白也能看得懂

鞋子特大号

Linux sed

热乎的阿里、百度、平安等大厂面试真题 你要不要?

比伯

Java 编程 架构 面试 计算机

week13-作业二-根据当周学习情况,完成一篇学习总结

未来已来

第6周课后练习-技术选型二

潘涛

架构师训练营 4 期

做事情时,脑袋中一次只装一件事

熊斌

读书笔记 2月春节不断更

翻译:《实用的Python编程》01_01_Python

codists

Python

反常识的学习思维

小匚

自我思考 成长笔记

话题讨论:公司已经发不出工资了,你会选择坚持还是放弃?

石云升

话题讨论 2月春节不断更

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型_阿里巴巴_InfoQ精选文章