2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

阿里巴巴

  • 2023-06-28
    北京
  • 本文字数:1720 字

    阅读完需:约 6 分钟

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

大语言模型(LLM)是当前自然语言处理领域最核心的技术,以 GPT-4 为代表的大语言模型展现出了类人的学习能力。其中,情境学习(In-context Learning)是大语言模型最神秘的能力之一。如下图所示,在这种情境学习的范式下,大模型无需更新任何参数,仅依赖几个示例样本(demonstrations)就可以学习新任务,执行新样本的预测。



得益于这种范式的存在,使得大模型可以仅通过修改指令(prompt)和示例 (demonstrations)就在某个具体任务上达到不错的效果,然而当前的情境学习仅通过输入一次示例的方式来进行任务的归纳与推理,存在很大的局限。首先,这种单轮的策略与人类类比学习的决策过程并不一致。

 

在认知学中,人类通常通过迭代式的思维过程(例如,分析示例、反思示例和形成抽象概念)执行类比学习。可以考虑让大模型通过“思考更长时间”或者“多次思考”,来提升情境学习的能力。其次,一些相关工作指出,情境学习与传统神经网络训练的梯度下降有潜在的联系,一次大模型前向的过程完成了一次隐式的梯度下降,可以看作执行了一次训练。这进一步表明,可以通过多次(迭代)前向训练演示来提高情境学习的效果,让大模型和人类一样,拥有深度思考的过程。



阿里首创前向训练框架


为此,阿里研究团队在《Iterative Forward Tuning Boosts In-context Learning in Language Models》论文中率先提出了一个新的大模型情境学习框架——Deep-Thinking。


论文:https://arxiv.org/abs/2305.13016

代码: https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/deep-thinking

Demo: https://modelscope.cn/studios/huybery/deep-thinking/summary

 

Deep-Thinking 与传统情境学习不同,它分为两个阶段。第一个阶段为思考阶段,仅将示例作为大模型的输入,然后通过多次迭代来让大模型进行前向“训练/思考”,模拟人类不断地观察与学习示例样本。为了做到前向训练,研究团队借助 self-attention 中的 Key, Value 矩阵作为一种“元梯度”。

 

具体来说,需要执行多个步骤优化过程。在某一次具体的优化过程中,研究团队改造 self-attention 的前向机制,对  Key, Value 矩阵执行了更新 (update) 与 合并 (concat) 操作。更新操作通过当前步骤的元梯度与历史累积到的元梯度进行积累,产生新的元梯度。而合并操作将元梯度进行合并,让网络更深层地表示受到元梯度的增益。需要强调的是,这个过程不依赖反向传播,所以能够大大地降低大模型的训练的成本。第二个阶段为推理阶段,输入待预测的样本与训练阶段产生的最终元梯度,最终执行预测。



Deep-Thinking 拥有两个优势,一方面通过第一阶段的思考可以有效提升下游任务的效果,另一方面,在第二阶段预测时仅需要输入预测的样本与第一阶段学习的产物(K,V 矩阵),无需输入大量的自然语言示例,可以有效节约显存并提升推理速度。


效果


为了评估 Deep-Thinking 相比传统情景学习的优势,该团队评测四种 LLM 的不同尺寸,共 20 个模型在 10 个数据集上的效果,发现都有较好的提升,在某些情况下甚至能得到几十个点的相对提升。



除了定量的评估外,该团队还执行了一些有趣的分析,Deep-thinking 的优化过程和传统的梯度下降优化展现出了一系列有趣的现象:首先,Deep-thinking 也存在类似过拟合的现象,如果迭代过程过多,将会导致效果下降,可以通过引入小规模的验证集来选择合适的迭代次数,这与传统优化中的 Epoch 概念类似;其次,Deep-thinking 的梯度范式也呈现出了与梯度下降相同的趋势,比如更浅的层收敛更快,对学习率敏感等。



展望


传统的模型优化依赖于反向传播算法,但这种方法需要大量的计算资源和庞大的数据集,使得大模型的训练与微调成本非常高昂,成为大模型落地的阻碍之一。

 

而阿里研究团队提出的 Deep-thinking 是一种迭代式的前向训练框架,摒弃了反向传播的依赖,这将允许用户和企业在具体的任务上低成本的优化大模型效果。企业往往需要保护用户数据的安全性,但同时也需要让模型具备针对特定任务的学习能力。利用 Deep-thinking ,企业可以在不共享大量数据的前提下,根据自身需求快速训练和优化专属模型。这对于提高模型的个性化适应性和隐私保护具有重要意义,这项技术有潜力成为大模型落地的最佳实践。

2023-06-28 17:334930
用户头像
赵钰莹 极客邦科技 总编辑

发布了 934 篇内容, 共 721.5 次阅读, 收获喜欢 2717 次。

关注

评论

发布
暂无评论
发现更多内容

私有分布式账本技术还是公共区块链?

CECBC

Pandas教程:数据类型操作

Peter

Python pandas

架构实战课程 模块6作业

Frank

字节跳动是如何落地微前端的

字节跳动终端技术

字节跳动 大前端 Web应用开发

看山聊 Java:检查日期字符串是否合法

看山

Java 10月月更

设计微博系统中"微博评论"的高性能高可用计算架构

Rabbit

100台机器上海量IP如何查找出现频率 Top 100?

秦怀杂货店

IP 海量数据 top

Pandas教程:数据处理基石-数据探索

Peter

Python pandas

架构实战课程 模块5作业

Frank

BPM软件是什么?BPM软件跟BPA有关联吗?

低代码小观

企业管理 业务流程管理 信息管理

新一代容器平台ACK Anywhere,来了

阿里巴巴云原生

阿里云 云原生 ACK Anywhere

虚拟化管理软件比较(Eucalyptus, OpenNebula, OpenStack, OpenQRM,XenServer, Oracle VM, CloudStack,ConVirt)

hanaper

linux之iftop命令

入门小站

Linux

在线2-36任意进制转换工具

入门小站

工具

[ Golang 中的 DDD 实践] 值对象

baiyutang

golang 设计模式 领域驱动设计 DDD 10月月更

【LeetCode】无重复字符的最长子串Java题解

Albert

算法 LeetCode 10月月更

这些行业用ERP系统会有很大帮助

低代码小观

企业管理 ERP

MyBatis 批量插入数据的 3 种方法!

王磊

Java mybatis springboot

重置不良的编程陋习

devpoint

编码习惯 10月月更

“区块链+农业”推动产业“提档升级”

CECBC

VNC服务安装配置与使用

耳东@Erdong

vnc 10月月更

【Vuex 源码学习】第九篇 - Vuex 响应式数据和缓存的实现

Brave

源码 vuex 10月月更

Golang语言HTTP客户端实践

FunTester

golang 性能测试 HTTP 接口测试 FunTester

接棒运动赛事!工厂里也有热血竞技?

白洞计划

架构实战营模块九作业 - 毕业设计

王晓宇

架构实战营

以太坊的黄金时代:模块化的区块链范式的开端

CECBC

强化学习RL AWS 自动驾驶DeepRacer ROS 架构 易筋 ARTS 打卡 Week 71

John(易筋)

ARTS 打卡计划

【Flutter 专题】34 图解自定义 View 之 Canvas (二)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 10月月更

使用 Ansible 部署 Elasticsearch 集群

Se7en

最长回文子串 -- 三种解答

秦怀杂货店

数据结构 算法 最长回文子串

私有云部署系列之动态获取IP(程序执行)

稻草鸟人

Python

阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型_阿里巴巴_InfoQ精选文章