写点什么

分布式云应用的导图生成方式比较

  • 2017-07-03
  • 本文字数:1247 字

    阅读完需:约 4 分钟

所谓应用导图,就是分布式应用内部组件的拓扑图,该拓扑图包含了组件连接成的网络和节点间的信息交互。AppDynamics、OpenTracing 以及 Netsil 等工具内部都使用了多种不同的应用导图绘制方法,近期有文章针对这些方法进行了综述。

可以把应用导图看做一个图,组件对应图的节点,而组件间的交互对应图的边。这里说的组件,可以单指进程(同一机器内部) 以及计算实例,或者二者的组合。如果是前者,进程间通信(IPC) 就是图的边,而这种通信又是架构在后者构成的网络之上。应用导图有很多重要特征,例如执行实例分组、提供应用级别的详细信息和错误率等关键度量指标的可视性等。

应用导图之所以重要,主要是因为对内部组件的观测、获取组件的依赖信息等,都离不开应用导图。应用导图可以快速定位问题根因,加快甄别监控和告警中的关键路径,同时,在数据驱动能力规划和潜在的安全问题方面,应用导图也可以发挥作用。

上述的文章总结了具体实践中导图的两种常用制作方法,即静态方法和动态方法,并详述了动态方法。通过追踪各种组件间的请求路径,导图生成软件可以绘制出分布式应用的应用导图。动态跟踪技术包含了端到端跟踪方式和个体跟踪方式。

应用性能管理(APM) 工具和代码仪表盘SDK 等工具都属于端到端(E2E) 跟踪软件,对这类工具来说,要么需要提供本地软件代理,要么能够直接修改远程应用源码,二者必选其一。 AppDynamic Dynatrace 以及 New Relic 通过对代码做 profiling 和跟踪事务处理路径来创建导图。对 APM 工具来说,只要有新技术栈出现,就需要对其增加支持,这对新技术栈的广泛传播带来了较大的挑战。 OpenTracing Datadog APM 以及 AWS X-Ray 这三个工具在发送请求时,会把唯一 ID 和元数据夹裹到请求消息的头部,来搜集组件间的相关性,以协助完成导图的构建。

端到端跟踪方式虽然可以跟踪到请求的精准路径,但代价巨大,因为追踪过程中会产生海量的数据,入侵威胁也会在路径集成时被引入,因为入侵不会影响到性能,所以这种入侵也不易被察觉。但是像 Zipkin 等工具已经专注于分析性能的微小波动了。

个体追踪 (也指 Ingress 和 Egress) 有两类数据源,即日志文件跟踪和系统级跟踪,这两类数据源相比动态方法中的技术栈来说波动较小,较为稳定。由于工作在网络层,个体跟踪技术可以把在网络上通信的组件一一进行绘制,也可以处理那些通过 E2E 方式不能追踪到的组件。但是,这种方法也有弊端,那就是由于其内在的低层次特征,在请求的生命周期内产生的特定数据包的上下文对于这种追踪方式来说并不明显,而且获取上下文的复杂性对于不同的应用软件来说不一样。所以这种方法对经过加密的调用请求无能为力,同时,为了找到数据和上层业务内部事务执行过程之间的相关性,引入深度的包检测机制是非常必要的。

查看英文原文 A Comparison of Mapping Approaches for Distributed Cloud Applications


感谢薛命灯对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2017-07-03 19:001916

评论

发布
暂无评论
发现更多内容

openGauss内核荣获中国首个国际CC EAL4+级别认证

daydayup

Flask框架-请求与响应

霍格沃兹测试开发学社

活动预告 | 中国数据库联盟(ACDU)中国行第二站定档杭州,邀您探讨数据库技术与实践!

墨天轮

数据库 oracle postgresql AntDB oceanbase

面部表情识别的挑战和前景

数据堂

openGauss的SQL引擎在3.1.0版本中做了哪些优化?

daydayup

openGauss数据库从3.0.0升级到3.1.0操作实践

daydayup

单元测试|unittest生成测试报告

霍格沃兹测试开发学社

Python

直播精华回顾|《2023中国营销+AIGC市场研究报告》照进产业现实

TE智库

软件测试|中间件-redis击穿、穿透区别,如何设计用例及测试

霍格沃兹测试开发学社

软件测试|如果有一个页面特别卡顿,设想一下可能的原因?

霍格沃兹测试开发学社

低代码平台技术分享官丨工作流应用场景之多人会签

inBuilder低代码平台

工作流 低代码平台

面部表情识别在人机交互中的应用

数据堂

openGauss —— 智能优化器之基数估计

daydayup

马上解锁 StarRocks 存算分离,降本增效无需等!

StarRocks

数据库 大数据 数据仓库 存算分离

UI自动化 - 如何判断一个页面上元素是否存在?

霍格沃兹测试开发学社

面部表情识别的技术实现

数据堂

数据库迁移系列】从MySQL到openGauss的数据库对象迁移实践

daydayup

openGauss赋能企业核心场景应用 | 华为全联接大会2022专题回顾

daydayup

openGauss内核分析(二.一):简单查询的执行

daydayup

Flask框架-接口路由

霍格沃兹测试开发学社

软件面试|driver调用quit方法和调用close方法的区别?

霍格沃兹测试开发学社

openGauss内核分析(二.二):简单查询的执行

daydayup

Python Faker库造伪数据,使用CSV文件数据管理,faker数据唯一性

霍格沃兹测试开发学社

AI大模型之花,绽放在鸿蒙沃土

脑极体

鸿蒙 AI

这个Python项目让古诗变得更易读,看完《长安三万里》惊艳了!

程序员晚枫

Python 拼音 长安三万里 古诗词

java代码加壳加密工具 jar-protect

车江毅

pycharm环境配置

霍格沃兹测试开发学社

金奖方案 | 一专多能、傲视寰宇,南大通用GBase8c数据库牛在哪里?

daydayup

分布式云应用的导图生成方式比较_DevOps & 平台工程_Hrishikesh Barua_InfoQ精选文章