50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

歌曲推荐系统实践:Pandas、SciPy 和 D3.js

  • 2015-05-07
  • 本文字数:1997 字

    阅读完需:约 7 分钟

时至今日,虽然海量数据、大数据、数据挖掘、个性化等名词术语已耳熟能详,仿佛谁人两两遇到都可以轻易写个挖掘系统出来,但情况真的是这样么? Flipboard 数据产品部门的工程师 Ben Frederickson 在与友人的讨论中就发现,写个推荐系统并没有那么轻而易举,为此他专门写了一篇博文来记录自己实现的整个过程,利用的工具是数据挖掘领域很热门的 Pandas SciPy 函数库,最后使用 D3.js 进行交互和可视化,相关的代码都放在了 GitHub 上。

具体来讲,一个推荐系统包括数据的获取和存储,相似度的计算以及最终结果的可视化,下面分别阐述。

数据获取

Ben 的推荐系统是针对 Last.fm 用户的,所用数据集是通过 Last.fm 的 API 获取的大约 36 万用户对歌手的喜爱程度。程度以用户对该歌手的播放次数为指标,数据集大小在 1 千 7 百万左右。想要在程序中使用这个数据集,ben 通过 Python 数据挖掘工具 Pandas 的 read_table 将 csv 格式的数据导入成为表格。

复制代码
data = pandas.read_table("usersha1-artmbid-artname-plays.tsv",
usecols=[0, 2, 3],
names=['user', 'artist', 'plays'])

将数据加载为表格以后,剩下的任务就是计算相似度了,ben 给出了三种相似度的计算方法,分别是简单的相似度计算,余弦相似度和来自信息学的相似度计算,并给出了各类方法最后的可视化比较。

简单相似度

简单相似度计算,顾名思义,是最简单的相似度计算方法,用来计算两个歌手的相似程度。这种计算方法,忽略歌手被用户播放的次数,只是简单计算两个歌手重叠的用户数目。

复制代码
def overlap(a, b):
return len(a.intersection(b))

这种计算方法的问题在于,那些流行的歌手的存在,会极大影响相似度的准确性。例如几乎每个用户都听过 Radiohead、Coldplay 和披头士,这使得简单相似度方法给出的答案里面,越是流行的歌手越相似。

为了解决这个问题,ben 引入了新的相似度定义, Jaccard 相似度,利用数据挖掘中常用的正则化(Normalize)手段,将简单相似度正则化,消除用户数目对歌手相似度的影响,具体计算方法如下:

复制代码
def jaccard(a, b):
intersection = float(len(a.intersection(b)))
return intersection / (len(a) + len(b) - intersection)

类似的正则化方法还有很多,比如 Dice 正则和 Ochiai 正则等,从一定程度上改善了相似度计算的准确性,但也带来了一点问题,即集合大小相近的歌手会更加相似,ben 觉得这样也并不合理,因此进一步提出了使用余弦相似度。

余弦相似度

上文中提到的简单相似度抛弃了用户对歌手播放次数这一重要信息,实际上它代表了用户对该歌手的喜爱程度,细想一下是非常有道理的,一个披头士的重度听众怎么能够跟听过寥寥几曲的听众一样呢?那么,利用上播放次数这一信息最直接的办法,就是余弦相似度方法,计算公式如下:

复制代码
def cosine(a, b):
return dot(a, b.T)[0, 0] / (norm2(a) * norm2(b))

通过上面公式,我们就可以将播放次数引入到相似度的计算中。公式中的 a 和 b 分别代表歌手的听众向量,通过下面的代码构造生成:

复制代码
# map each username to a unique numeric value
userids = defaultdict(lambda: len(userids))
data['userid'] = data['user'].map(userids.__getitem__)
# map each artist to a sparse vector of their users
artists = dict((artist, csr_matrix(
(group['plays'], (zeros(len(group)), group['userid'])),
shape=[1, len(userids)]))
for artist, group in data.groupby('artist'))

来自信息学的相似度

除了单纯利用播放次数以外,ben 还介绍了来自信息学的,确切来讲是来自搜索引擎中常用的自然语言处理技术,来计算歌手之间的相似度,即词频 - 逆文档频率(TF-IDF)作为向量的相似度计算方法。

这种相似度的发明,来自搜索引擎对检索结果排序的需求,即计算检索关键词与检索返回的文档之间的相似程度。具体来讲,如果某个词语在一个描述语句中出现的频率很高(TF 很高),而在其他描述语句中很少出现(IDF 很高),则认为该词语具有很好的区分文档的能力,其 TF-IDF 值就比较高,那么对应到歌曲推荐这个任务来讲,ben 将用户(听众)看作一个个的单词,来进一步考虑特定用户对相似度准确性的影响,可谓是三种方法中比较准确的一个了,ben 还在原文中用 D3.js 给出了几种相似度的效果对比分析。

总结

在专业术语充斥耳畔的今天,能够有耐心真正自己去尝试一些想当然的东西、算法甚至系统,是非常难能可贵的精神,而收获也是非常丰富的。Ben 以 Python 中常用的 Pandas 和 SciPy 等工具,展现了从头实现一个推荐系统的方法,正是这种精神的实践典范。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-05-07 08:094925
用户头像

发布了 268 篇内容, 共 136.2 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

Acrobat Pro DC 2024,打造顶级文档处理平台

Rose

强大防护软件 Deep Freeze(冰点还原精灵),释放电脑潜能!

Rose

CST如何进行局部网格剖分

思茂信息

cst cst使用教程 电磁仿真

ChatGPT Search 上线 允许用户像使用搜索引擎一样完成即时搜索

吴脑的键客

ChatGPT Azure OpenAI

3D摄影棚布光工具 Set A Light 3D Studio for Mac 永久版

Rose

基于微服务SDK框架与JavaAgent技术,低成本助力应用高效发布

华为云开发者联盟

微服务 灰度发布 java-agent Java Chassis 3

观测云:简化复杂的云账单,让企业轻松掌控云成本

观测云

云账单

软件测试学习笔记丨Flask框架-集成Swagger文档

测试人

软件测试

DataWorks:新一代 Data+AI 数据开发与数据治理平台演进

阿里云大数据AI技术

大数据 Serverless 云原生 Dataworks

Elasticsearch开源仓库404 7万多star一夜清零

吴脑的键客

数据库 搜索引擎

Emeritus硅谷AI深度研学之旅圆满落幕,探索AI前沿投资洞察!

科技汇

人工智能如何从神话走向科学的?

天津汇柏科技有限公司

人工智能 AI 人工智能

用二维码展示信息,有哪些常见应用场景

草料二维码

鸿蒙网络编程系列42-仓颉版域名解析示例

长弓三石

DevEco Studio 开发实例 HarmonyOS NEXT 网络与连接

功能强大、简单易用的视频下载工具 4K Video Downloader for mac

Rose

实验室辅助管理系统(源码+文档+部署+讲解)

深圳亥时科技

GreptimeDB vs. SQLite —— 高通 8155 平台上的性能对比报告

Greptime 格睿科技

sqlite 数据库 边缘计算 嵌入式 性能报告

CrossOver 24 for Mac(windows 虚拟机) 附激活补丁

Rose

Omi录屏专家 Screen Recorder by Omi Mac v1.3.9激活版

Rose

大数据集群搭建,CDH让你事半功倍!

敏捷调度TASKCTL

cloudera CDH 集群搭建 CDH 大数据 Hadoop 集群迁移

Llama 3.2 Vision & Molmo:多模态开源生态系统基础

Baihai IDP

程序员 AI Baihai IDP Llama 3.2 Vision Molmo

HyperWorks二维网格划分及拓扑改进

智造软件

Hypermesh 网格划分 有限元

EndNote 21 for mac 授权破解版 EndNote下载安装包

Rose

cdr 2023 mac破解版 附激活码 CorelDRAW Graphics Suite 2023中文安装包

Rose

商协会管理系统(源码+文档+部署+讲解)

深圳亥时科技

【论文速读】| APILOT:通过避开过时API陷阱,引导大语言模型生成安全代码

云起无垠

智慧停车系统(源码+文档+部署+讲解)

深圳亥时科技

1024程序员节 | 华为与开发者共筑智能应用新生态

极客天地

歌曲推荐系统实践:Pandas、SciPy和D3.js_语言 & 开发_张天雷_InfoQ精选文章