写点什么

歌曲推荐系统实践:Pandas、SciPy 和 D3.js

  • 2015-05-07
  • 本文字数:1997 字

    阅读完需:约 7 分钟

时至今日,虽然海量数据、大数据、数据挖掘、个性化等名词术语已耳熟能详,仿佛谁人两两遇到都可以轻易写个挖掘系统出来,但情况真的是这样么? Flipboard 数据产品部门的工程师 Ben Frederickson 在与友人的讨论中就发现,写个推荐系统并没有那么轻而易举,为此他专门写了一篇博文来记录自己实现的整个过程,利用的工具是数据挖掘领域很热门的 Pandas SciPy 函数库,最后使用 D3.js 进行交互和可视化,相关的代码都放在了 GitHub 上。

具体来讲,一个推荐系统包括数据的获取和存储,相似度的计算以及最终结果的可视化,下面分别阐述。

数据获取

Ben 的推荐系统是针对 Last.fm 用户的,所用数据集是通过 Last.fm 的 API 获取的大约 36 万用户对歌手的喜爱程度。程度以用户对该歌手的播放次数为指标,数据集大小在 1 千 7 百万左右。想要在程序中使用这个数据集,ben 通过 Python 数据挖掘工具 Pandas 的 read_table 将 csv 格式的数据导入成为表格。

复制代码
data = pandas.read_table("usersha1-artmbid-artname-plays.tsv",
usecols=[0, 2, 3],
names=['user', 'artist', 'plays'])

将数据加载为表格以后,剩下的任务就是计算相似度了,ben 给出了三种相似度的计算方法,分别是简单的相似度计算,余弦相似度和来自信息学的相似度计算,并给出了各类方法最后的可视化比较。

简单相似度

简单相似度计算,顾名思义,是最简单的相似度计算方法,用来计算两个歌手的相似程度。这种计算方法,忽略歌手被用户播放的次数,只是简单计算两个歌手重叠的用户数目。

复制代码
def overlap(a, b):
return len(a.intersection(b))

这种计算方法的问题在于,那些流行的歌手的存在,会极大影响相似度的准确性。例如几乎每个用户都听过 Radiohead、Coldplay 和披头士,这使得简单相似度方法给出的答案里面,越是流行的歌手越相似。

为了解决这个问题,ben 引入了新的相似度定义, Jaccard 相似度,利用数据挖掘中常用的正则化(Normalize)手段,将简单相似度正则化,消除用户数目对歌手相似度的影响,具体计算方法如下:

复制代码
def jaccard(a, b):
intersection = float(len(a.intersection(b)))
return intersection / (len(a) + len(b) - intersection)

类似的正则化方法还有很多,比如 Dice 正则和 Ochiai 正则等,从一定程度上改善了相似度计算的准确性,但也带来了一点问题,即集合大小相近的歌手会更加相似,ben 觉得这样也并不合理,因此进一步提出了使用余弦相似度。

余弦相似度

上文中提到的简单相似度抛弃了用户对歌手播放次数这一重要信息,实际上它代表了用户对该歌手的喜爱程度,细想一下是非常有道理的,一个披头士的重度听众怎么能够跟听过寥寥几曲的听众一样呢?那么,利用上播放次数这一信息最直接的办法,就是余弦相似度方法,计算公式如下:

复制代码
def cosine(a, b):
return dot(a, b.T)[0, 0] / (norm2(a) * norm2(b))

通过上面公式,我们就可以将播放次数引入到相似度的计算中。公式中的 a 和 b 分别代表歌手的听众向量,通过下面的代码构造生成:

复制代码
# map each username to a unique numeric value
userids = defaultdict(lambda: len(userids))
data['userid'] = data['user'].map(userids.__getitem__)
# map each artist to a sparse vector of their users
artists = dict((artist, csr_matrix(
(group['plays'], (zeros(len(group)), group['userid'])),
shape=[1, len(userids)]))
for artist, group in data.groupby('artist'))

来自信息学的相似度

除了单纯利用播放次数以外,ben 还介绍了来自信息学的,确切来讲是来自搜索引擎中常用的自然语言处理技术,来计算歌手之间的相似度,即词频 - 逆文档频率(TF-IDF)作为向量的相似度计算方法。

这种相似度的发明,来自搜索引擎对检索结果排序的需求,即计算检索关键词与检索返回的文档之间的相似程度。具体来讲,如果某个词语在一个描述语句中出现的频率很高(TF 很高),而在其他描述语句中很少出现(IDF 很高),则认为该词语具有很好的区分文档的能力,其 TF-IDF 值就比较高,那么对应到歌曲推荐这个任务来讲,ben 将用户(听众)看作一个个的单词,来进一步考虑特定用户对相似度准确性的影响,可谓是三种方法中比较准确的一个了,ben 还在原文中用 D3.js 给出了几种相似度的效果对比分析。

总结

在专业术语充斥耳畔的今天,能够有耐心真正自己去尝试一些想当然的东西、算法甚至系统,是非常难能可贵的精神,而收获也是非常丰富的。Ben 以 Python 中常用的 Pandas 和 SciPy 等工具,展现了从头实现一个推荐系统的方法,正是这种精神的实践典范。


感谢崔康对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-05-07 08:094843
用户头像

发布了 268 篇内容, 共 133.6 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

低代码应用搭建平台,基于低代码快速开发管理系统

互联网工科生

低代码 低代码开发 JNPF

2023-06-25:redis中什么是缓存穿透?该如何解决?

福大大架构师每日一题

redis 福大大架构师每日一题

强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)

汀丶人工智能

人工智能 深度学习 强化学习 6 月 优质更文活动

C语言中.与->的用法介绍

芯动大师

AWS 亚马逊云科技 1 亿美金入局AIGC,哪些AI云服务已经可以对标微软、谷歌?

B Impact

阿里云EMAS超级App助力Agmo电动车超级应用程序发布

移动研发平台EMAS

阿里云 超级app解决方案

浅谈全面预算在交通运输与物流行业的应用

用友BIP

全面预算

国外主机引领你的网站征服全球!

一只扑棱蛾子

国外主机

从幕后走到台前!过去十年,我们在阿里云如何建设可观测体系?

阿里巴巴云原生

阿里云 云原生 可观测

App Store——OpenAI 的MaaS模式或将上线,与Microsoft、Salesforce 争To B客户

B Impact

建筑产业变革肇始,华为提笔写下新《营造法式》

脑极体

全屋智能

2023年度解决方案大奖花落用友,人才发展解决方案备受瞩目

用友BIP

数智人力

智慧垃圾分类处理3D可视化系统

2D3D前端可视化开发

智慧环卫 智慧垃圾处理 智慧垃圾分类 智慧环保

镭速——简单、快速、自动备份数据到云端

镭速

3DCAT实时云渲染助力上海市乡村振兴可视化平台,展现数字乡村的魅力

3DCAT实时渲染

云渲染 数字孪生实时云渲染

超越极限!80Gbps高速传输,让您的数据瞬间飞速传递

镭速

强化学习从基础到进阶-常见问题和面试必知必答[5]::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)

汀丶人工智能

人工智能 深度学习 强化学习 6 月 优质更文活动

OSPFv3:第三版OSPF除了支持IPv6,还有这些强大的特性!

wljslmz

OSPF 6 月 优质更文活动

一文了解Java低代码开发平台

互联网工科生

Java 低代码 JNPF java低代码开发平台

谷歌推出“能讲会听”的大语言模型 AudioPaLM,实现语音理解和生成

Zilliz

谷歌 AIGC 大语言模型

EMQ & 明道云:零代码高效构建工业物联网设备管理平台

EMQ映云科技

IoT 工业物联网 明道云

集团公司该如何构建信息化系统?

优秀

信息化系统

利用Flutter和小程序容器打造更强大的用户体验

FinFish

flutter 小程序 跨端开发 小程序容器 跨端框架

国企为什么要建设数智底座?

用友BIP

数智底座 Pass平台

实录分享 | Alluxio Operator一体化部署方案

Alluxio

分布式 operator Alluxio 大数据 开源 容器化部署

SOFAStack 的下一个五年

SOFAStack

开源 SOFA 程序员 java

歌曲推荐系统实践:Pandas、SciPy和D3.js_语言 & 开发_张天雷_InfoQ精选文章