写点什么

veImageX 演进之路:FPGA HEIF 静图编码服务性能优化

  • 2022-12-14
    北京
  • 本文字数:3030 字

    阅读完需:约 10 分钟

veImageX演进之路:FPGA HEIF 静图编码服务性能优化

前言


压缩技术对于图像、视频应用十分重要。在保证同样主观质量的前提下,如何将图像压缩到更小体积便于互联网信息传输,火山引擎视频云团队不断突破压缩技术“天花板”。


字节跳动在公司成立之初就建设了图像处理平台,起初主要服务于今日头条 APP 的图文资源。随着业务扩展,后逐步服务于抖音图集、短视频封面、图虫等几乎用户能看到的所有图片展示场景。火山引擎视频云团队将字节跳动图像处理的实践,整理为《veImageX演进之路》系列,将从产品应用、后端技术、前端技术、算法、客户端 SDK 详细解读字节跳动背后的图像技术。


veImageX 是火山引擎基于字节跳动内部服务实践,推出的图像一站式解决方案 ,覆盖上传、存储、处理、分发、展示、质量监控全链路应用。

背景


互联网内容的展示离不开图片,通过 CDN 展示分发图片可以提升图片访问速度,但是也需要为带宽付费。HEIF 图片格式有着卓越的压缩性能,相比 WebP 可以节省 30% 的图片码率,由此可以为业务节省相当规模的带宽成本。


但 HEIF 格式是一把双刃剑,相比其他格式,在提升压缩率的同时,也需要消耗更多 CPU 计算资源。为了降低 HEIF 格式的编码计算成本,veImageX 采用了 FPGA 异构架构,逐步将 HEIF 编码的流量从 CPU 计算集群迁移到 FPGA 计算集群。


在流量迁移过程中,最初整体流量较小,FPGA 编码服务看起来很稳定。但随着迁移过程递进,当 FPGA 的单卡 QPS 上涨到一定阈值后,FPGA 卡所在宿主机的性能瓶颈逐渐暴露出来,影响了整体的迁移工作。


本文会对迁移过程中遇到的性能瓶颈做分析,并给出优化解决方案。经过这一系列优化措施,veImageX 整体 CPU 负载从 80% 降低为 30%,相应的服务延时从 140ms 降低为 4ms。

架构

首先,我们看一下 FPGA HEIF 静图分发链路的整体架构。



链路分为三块:

● 业务 App:一般会集成 veImageX 的图片 SDK。既可以兼容各类图片格式(自然也包括 HEIF),提供了图片的下载、解码、展示功能。也支持将访问图片过程中产生的指标数据上报,这样可以方便在控制台查看这些性能指标,比如解码耗时、图片加载成功率等。

● veImageX 分发基础链路:主要解决了图片分发问题,提供了基础的图片实时处理能力。其中 CDN 缓存了图片请求,提供了加速访问的能力;veImageX 源站服务主要负责访问权限的校验、流量控制、图片资源下载以及静态图片的主体处理流程。对于 HEIF 静图编码场景,veImageX 源站服务则需要和 FPGA HEIF 编码服务互动,协作完成。

● FPGA HEIF 编码服务:自上而下可以分为编码服务层、编码驱动层、编码硬件层。


为了解决计算资源异构引入的耦合问题,FPGA HEIF 的编码能力通过 HTTP 服务化的方式提供出来。所有的 FPGA 卡部署于字节跳动自研的 Lambda 计算平台。通过 Lambda 函数+资源虚拟化的方式,将 HEIF 编码功能抽象为上游可直接调用的服务,并能确保将编码请求均衡地调度到各个 FPGA 卡上。物理机上的每一张 FPGA 卡和对应的主机 CPU 和内存资源都被打包,经由 Executor 管理。此外,为了防止 FPGA 卡被突发流量打挂,Executor 内置了一个执行队列,用于控制 FPGA 卡的并发吞吐。


编码服务层主要负责解析 HTTP 请求,获取待编码的图片数据。待编码的图片数据一般通过 JPEG 格式传入,因此其中内嵌了一个 JPEG 解码器。此外,veImageX HEIF 支持自适应编码选项,通过服务层内的自适应模型预测编码所用到的质量参数。服务层中的 HEIF 编码器是一个适配层,屏蔽了底层计算架构的差异,对于 CPU 和 FPGA 都可以提供相同的编码接口,将传入的 RGBA 像素矩阵编码为 HEIF 码流。


编码驱动层中的 FBVC1 编码器可以将图片像素序列编码为二进制码流,上层的 HEIF 编码器拿到这个码流后,按照 HEIF 标准格式封装即可。FBVC1 编码过程中,依赖了 FPGA 驱动库和编码硬件层打交道,发送指令,读写 FPGA 设备。

优化方向

降低线程数

在迁移测试 FPGA 编码服务过程中,我们也遇到了一些性能瓶颈的问题。首当其冲的是,当单机 QPS 达到 2K 时,CPU 负载高达到 60%。通过分析热点,我们可以看到问题出现在 onnxruntime 这个库上。


从调用的 API 很容易联想到,这是一个线程相关问题。我们都知道,如果没有手动设置线程数的话,默认会使用物理机核数作为线程数,导致整体的调度开销比较严重。

因此,需要根据宿主机的 CPU 配置情况,手动配置线程数,不要使用默认配置,最终将 CPU 负载从 57% 降低到 7%。

调优 GOMAXPROCS

HEIF 的编码服务层是使用 Golang 实现的。而 Golang 中使用了 GOMAXPROCS 这个环境编码来控制底层并发度。默认情况下,GOMAXPROCS 是和物理机核数相关。所以这里也遇到了和上一个问题相同的根因,需要限制整体的并发度。

针对 GOMAXPROCS 做了调优,在单机 QPS 达到 8K 时,CPU 负载下降了 6% 。

限制磁盘 IO

首先通过 statio 查看磁盘情况,


再结合下面的火焰图(黑框内有明显的磁盘 IO 操作)


这里很容易能想到这些磁盘 IO 操作导致了整体延迟的升高。但从结果来看,平均 8ms 还在预期范围内。但 HEIF 编码服务对处理的延迟要求较严格,请求处理过慢会导致请求堆积,此时 FPGA 的计算潜力无法做到完全释放。

针对这块定向优化,相关延时下降至 0.5ms,CPU 负载下降 3%。

另外,我们观察到磁盘和 cached memory 较高,这显然不太正常。



进一步定位后,确定是编码服务造成的。详细排查后发现,编码驱动层中的 FPGA 驱动程序的部分调试日志未关闭,导致大量的日志写磁盘。当关闭驱动的调试日志后,CPU 负载下降 5% 。

合并 CGO 调用

编码服务包括两部分的 CGO 调用:

● 自适应编码模型预测:每个请求会有最多 5 次的推理,合并为 Batch,减少为 1 次调用

● FPGA 编码:直接调用 SDK 需要 6 次 CGO 调用,对这部分实现 C 的封装,减少为 2 次调用

这部分优化影响较小,在延迟数据层面不是很明显,模型预测部分可能有几百 us 的优化。

减少 GC

编码服务每次处理请求都需要获取图像 raw data,因此服务会多次创建 []byte 的图像数据对象,容易导致频繁 GC。

一个解决问题的思路是在服务启动前预分配一个固定的对象池,每次请求需要的 []byte 对象直接从对象池里拿。此外,也曾尝试过使用 Golang 标准库中的 sync.Pool,但效果不好,可能的原因是 sync.Pool 里依然有一些 GC 相关的策略,不符合我们这个场景。

这部分优化后,CPU 负载下降了 6% 。

均衡中断

从系统的监控中,我们观察到各 CPU 负载不是很均匀。



编码过程中发生的中断情况


我们可以得出结论,FPGA 的相关中断被只绑定到了特定的 CPU 上,没有分布均匀。这个在当时并没有成为瓶颈,所以优化后没有明显提升。

加速图片解码

我们从火焰图可以看到解码时间占服务延时的较大部分。


对火焰图中黑框内调用栈分析后,观察到有相当部分时间消耗在了 JPEG 解码上。调查后,发现底层 SDK 解码使用了 libjpeg,整体性能不佳。这里我们替换为使用 SIMD 实现的 libjpeg-turbo 解码库后,CPU 负载降低了 10%,耗时减少 2ms。

优化总结

基于优化后的版本再次做性能压测,使用 300x400 分辨率的测试图片,当单机 QPS 达到 10K 时,编码服务整体性能指标变化如下:

●  CPU 负载从 80% 降低为 30%

● 服务延时从 140ms 降低为 4ms

可以看到,经过我们一套“组合拳”优化后,整体编码服务的性能有了明显提升。

写在最后

目前火山引擎 veImageX 已经上述实践形成端到端的解决方案对外输出,帮助每一个互联网企业用更低的成本达到更好的图片加载效果。除了商务降本之外,也可以用更“绿色”的算法降本,为行业降本增效提供了一种创新可能性。


了解更多 veImageX,点击阅读原文:https://www.volcengine.com/products/imagex

2022-12-14 21:143334

评论

发布
暂无评论
发现更多内容

收到7个offer,用同一个技术套路了多位面试官

钟奕礼

Java java程序员 java面试 java编程

SAP MM 采购订单的Document Flow

SAP虾客

借助云的力量,重塑企业的现在和未来|re:Invent 2022 Adam Selipsky 主题演讲精华全收录

亚马逊云科技 (Amazon Web Services)

亚马逊云科技

RocketMQ 5.0 可观测能力升级:Metrics 指标分析

阿里巴巴云原生

阿里云 RocketMQ 云原生

域内用户Hash获取方式总结

网络安全学海

黑客 网络安全 信息安全 渗透测试 漏洞挖掘

Java 编程入门第一课:HelloWorld

千锋IT教育

乐观锁思想在JAVA中的实现——CAS

JAVA旭阳

Java Java并发

九科信息受邀参加软件与信息服务产业集群高质量发展论坛

九科Ninetech

如何管好一个迭代?让数据帮你回答这些关键问题

思码逸研发效能

数据 研发效能 迭代

SAP MM 使用两个STO实现免关税跨国公司间转储(III)

SAP虾客

从零开始学习Java系列教程之Windos下dos命令行使用详解前言

千锋IT教育

用低代码赋能数字化 快速打造项目管理系统

力软低代码开发平台

模块一作业

程序员小张

「架构实战营」

世界杯“无障碍字幕直播间”火了,背后有啥火山语音的黑科技?

科技热闻

网易互娱数据成本优化治理实践

网易数帆

数据中台 数据仓库 数据治理 12 月 PK 榜

SAP IDoc状态70 - This IDoc is saved as the original of an edited document.

SAP虾客

如何使用 vue + intro 实现后台管理系统的引导

千锋IT教育

行业分析:头部咨询管理企业的“数字化转型”之路!

优秀

企业数字化转型 SAP咨询行业

Wallys/DR9074E-Qualcomm Atheros QCN9074(QCN9024)/ 4x4 MU-MIMO Dual Band Wireless Module

Cindy-wallys

QCN9074 QCN9024

挤破脑袋要进阿里、腾讯的java程序员,去B站不香吗?

钟奕礼

Java 程序员 java面试 java编程

Linux之基于Centos系统安装Redis、MySQL、Nginx

C++后台开发

nginx redis 后端开发 linux开发 C++开发

WorkPlus SE专业版:政企首选的安全即时通讯及移动办公工具

BeeWorks

Multi-Site High Availability Architecture solution of Honor of Kings mall

David

#架构实战营

这个库居然能够快速打开页面的链接

FE情报局

实战|2个 MatrixGate 接入性能优化小技巧

YMatrix 超融合数据库

性能优化 超融合数据库 数据接入 YMatrix MatrixGate

【iOS逆向与安全】iOS插件开发光速入门

小陈

一步登顶还是步步维艰?Java资深架构师撰下的“阿里P7成神之路”

钟奕礼

Java 程序员 java面试 java编程

含泪复盘!项目踩坑回炉改造血泪史(附芯片PCB/原理图)

华秋PCB

PCB PCB设计

NineData,领先的多云数据管理平台

NineData

数据库 数据复制 数据备份 多云管理 SQL开发

MegPeak——让你更懂你的处理器

MegEngineBot

深度学习 开源 处理器 MegEngine MegPeak

在不确定性的2022年寻找确定性|这些ToB赛道值得关注

ToB行业头条

veImageX演进之路:FPGA HEIF 静图编码服务性能优化_AI&大模型_周强_InfoQ精选文章