最新发布《数智时代的AI人才粮仓模型解读白皮书(2024版)》,立即领取! 了解详情
写点什么

京东电商搜索中的语义检索与商品排序

  • 2020-06-09
  • 本文字数:3720 字

    阅读完需:约 12 分钟

京东电商搜索中的语义检索与商品排序

导读: 本文将介绍京东搜索场景中的两块技术, 语义检索与商品排序 。在业界检索算法基础上,我们提出一系列更适用于电商场景的检索排序算法,在业务上取得了显著收益。其中的多篇论文已被 KDD/SIGIR 等收录。

01 背景介绍

电子商务搜索是京东等电商重要组成部分,用户通过搜索找到自己需要的商品,然后下单购买。一个典型电商搜索引擎的架构,包括三个重要组成部分: query 理解、召回和排序。



  • Query 理解:包括 query 的纠错、改写、扩展、分词等。

  • 召回阶段:给定一个查询词,从商品库中召回有效正确的商品候选集,并将结果返回给排序。召回方式有很多种,这里我们只介绍基于向量检索的召回。

  • 排序阶段:给定召回商品的候选集合,根据众多因子对这些商品进行排序,挑选出最好的候选商品展示给用户。


下面我们分别介绍,基于向量检索召回和商品排序:

02 向量召回

向量检索作为一种信息检索方式在工业界已经被广泛应用,它能解决传统倒排检索不能解决的问题。倒排通过字面匹配方式召回商品,这种方式存在一种缺陷,不能召回字面不匹配但语义层面相近的商品, 如 query='2-3 周岁宝宝玩具’是无法召回 sku='托马斯小火车’的。



通俗的讲就是训练一个模型,该模型通过将 query 和 sku 映射到统一维度空间,在该空间中,相似的商品距离近,不相近的商品距离较远。如上图例子,query=奶粉,在高纬空间里,相对鞋子、服装、手机,奶粉商品距离 query 更近。这是建模过程,生成 query 和 sku 的向量数据。


我们得到了 query 和 sku 的向量,接下来就是做检索,返回与 query 距离近的 topK 个 sku。而数据库的商品量非常多,通常是十亿级,不可能做线性遍历,考虑到时效性,会引入快速向量近似检索方法,如 KDTree、TDM、LSH、PQ、HNSW 等等,我们采用的是 PQ 算法,这里不再赘述,网上有很多材料介绍其算法。下面重点介绍我们的模型及在线检索框架。


模型方面不仅要考虑 query-sku 的相关性,我们也对用户行为进行建模,同一 query 针对不同用户、同一用户不同时刻检索出更具有个性化的商品。我们使用的是 DPSR ( Deep Personalized and Semantic Retrieval ) 算法,模型融合个性化和搜索语义信息,我们的论文已被 SIGIR2020 收录。

1. 检索系统 overview


从整体看,离线模型是一个双塔模型结构,query 和 sku 分别有一个 model tower。Query 端包括了 query 包括 query tokens、user profile、user history events 等特征。Sku 端包括 title tokens、brand、category、shopid 等特征。


离线索引 ( offline indexing ),使用的是 sku tower,导出 sku 的 embedding 构建 QP 索引。


在线服务 ( online serving ) 使用的是 query tower,模型加载在 tensorflow service,在线 predict query 的 embedding。

2. 模型详细设计

① Two tower model architecture


上面介绍了模型结构,一个 query tower Q,一个 sku tower S,对于给定的 query=q, sku=s,模型计算过程为:


f(q,s)=G(Q(q),S(s))


Q(q)∈Rd×m 表示 query 的 embedding


S(s)∈Rd×m 表示 sku 的 embedding


G 表示打分计算函数,比如 inner product、L2 distance 等


双塔模型训练完后,query 和 sku 的模型相对独立,我们可以分别计算他们。所有的 sku embedding 都在离线计算,以便快速构建向量检索索引。虽然 model 是相互独立的,但 query 和 sku 之间使用简单的点积计算,理论上 query 和 sku embedding 仍然在同一个几何空间中,具有可比性。


② Query tower with multi heads


我们看到左侧的 tower 和右侧有两点不一样:Projection layer 和 mutli heads,目的是为了丰富 query 侧的信息。如下图所示,不同的 head 可以捕获 query 不同的语义 ( query=苹果,语义可以是手机和水果 ),捕获不同的品牌属性 ( query=手机,品牌可以是华为、小米 ),捕获不同的产品属性 ( query=三星,产品属性可以是笔记本、手机 ) 等等。



③ Attention Loss


Multi heads 让 query 可以生成多个 embedding 与 sku embedding 计算 score。我们采用 attenion loss 做模型优化。


我们标记 query 的多个 embeding 为 Q(q)={e1,e2,…,em},其中 ei∈Rd,Sku 的 embedding 为 S(s)=g,g∈Rd,Query 和 sku 的打分计算如下:



其中 β 是 softmax heat 参数。假设 D 表示训练预料,r(qi,si+) 为正样本,r(qi,si-) 为负样本,模型优化的 loss 可表示为:



④ Negative Sampling


我们采用的是用户点击数据,数据量在 10 亿级作为正样本。负样本并未使用同 session 未点击的样本,因为搜索手机,展示了小米和华为手机,不能说未点击就是不相关商品。负例分为两部分:random negatives、batch negatives。我们增加了一组超参来调整两者的比例,观察发现 random negatives 越多,召回商品的 popularity 越高,更能吸引用户点击下单,但会降低商品与检索 query 的相关性。



模型训练算法具体如下:


3. 训练优化

我们也尝试过更强大的神经网络,如 RNN、transform 等,得到的效果类似或稍好一些。然而一个短延时的模型更适用于工业生产建模,这样可以使用更少的服务器做有效的离线训练和在线服务。


模型系统方面,我们也做了一系列训练优化,简单描述其中的几点:


  • 实现 c++ tokenizer,以 custom operator 方式加载到 tensorflow,离线训练和在线服务共用,保证 token 的一致性。

  • 训练数据压缩,修改训练数据格式,把共用的特征数据加载内存,训练时展开从而降低数据存储。也便于训练时做负例采样。



  • 可伸缩分布式,切分大的 embedding,并将 sum up 放到 ps 以解决 worker/ps 带宽瓶颈。

  • 模型 servable 服务,我们将向量检索和 tfs 合成一个服务,不仅减少一次网络访问,降低系统 3-5ms 的平响,而且将模型分片部署,从而可以支持上百个模型同时服务或者 A/B 实验。同时 servable 服务是 cpu 和 gpu 混合部署。


4. 语义检索效果展示

语义检索上线后获得了很好的体验效果,不仅提升了转化,长尾流量降低了近 10%的 query 改写率,也就是说用户不需要多次改写 query,就能获得想要的商品结果。


03 商品排序

下面介绍下商品排序:


商品排序主要是根据用户的输入对商品进行打分排序。商品排序的传统方法使用 xgboost 等基于决策树的方法从数据中进行学习,但是这些模型通常有成百乃至上千的数值型人工特征,不能有效的从原始特征比如用户历史点击购买数据、商品文本和图像中直接学习。近年来,深度学习在各种应用中验证了从原始特征中学习的有效性,在业界被广泛使用,比如 wide&Deep、DIN 等。下面介绍一个我们在商品搜索排序中尝试的方法。

1. 双胞胎网络

我们的训练数据来自于用户的搜索日志,通过将同一个 session 中用户购买的商品 ( 商品 a ) 和没有购买的商品 ( 商品 b ) 配对起来,并把购买未购买作为最终学习的 label,从而构造了用户查询-商品对训练集。


根据训练数据,我们首先设计了双胞胎网络结构:



双胞胎网络结构有两个共享参数的模块,每个模块分别输入用户、查询和商品特征,每个模块采用 ReLU 作为激活函数,最终层的输出一个分数,两个模块的差值和数据 label 作为交叉熵损失函数的输入。


在特征方面,我们使用以下几种不同类型的特征:


  • 数值型特征:包括商品销量、用户购买力和用户是否点过、购买过商品等。

  • 文本特征:包括用户输入的查询和商品名称等。

  • 用户历史行为:包括历史点击、购买、加购商品 list 等

  • 商品、用户 id 等


文本特征可以学习到一定的相关性信息,用户历史行为可以学习到个性化信息,id 类特征我们做了 pretrain。

2. 个性化升级

在第一版双胞胎模型中,我们简单的对用户的历史行为做 sum pooling,但是这样缺乏和搜索商品的交互,无法精准的表示用户的兴趣;为了加强用户的交互,我们升级了模型的结构,用候选商品和用户历史商品做 attention,从而将静态的 user embedding 升级为随 query 和当前商品变化的 user embedding。


我们还加入了 Graph 学习方法对 id 类特征 embedding 进行 pretrain,然后加入到模型训练中。具体方法使用用户的高质量点击行为生成商品 graph,通过 Random Walk 生成训练数据,然后利用 Skip-gram 进行训练,加入 id embedding 可以提高模型离线指标和收敛速度。


3. 时效性优化

值得一提的是,为了增强排序捕捉变化的能力,提升排序的流动性,我们从三个方面:特征时效性、模型时效性、线上预估校准进行了优化。


  • 提升特征时效性 :接入商品小时级的点击加购订单等实时信号,训练模型学习实时变化

  • 实时在线校准 :根据商品全站的点击订单等实时反馈信号,对模型原来的预测分数及时校准

  • 提升模型的更新频率 :优化训练数据生产流程,推动训练平台升级,提升模型训练速度


搜索排序是商品检索最重要的模块之一,我们在个性化、时效性、多目标等方向不断迭代,提升了排序体验,也提升了商品成交量。

04 总结

我们介绍了语义检索召回和商品排序,在京东搜索服务上部署并取得了良好效果。我们还在尝试一些业内其他流行的方法,比如 GNN、KG、MMoE 等方向,也获得了不错的成绩。


作者介绍


王松林、唐国瑜,京东算法工程师。


本文来自 DataFunTalk


原文链接


https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247501196&idx=1&sn=978b373e1278c709fc53036614a240ab&chksm=fbd777e0cca0fef630da6ed55518775e22afba1e74cd2e09701e055533146f29c71876ba77c4&scene=27#wechat_redirect


公众号推荐:

跳进 AI 的奇妙世界,一起探索未来工作的新风貌!想要深入了解 AI 如何成为产业创新的新引擎?好奇哪些城市正成为 AI 人才的新磁场?《中国生成式 AI 开发者洞察 2024》由 InfoQ 研究中心精心打造,为你深度解锁生成式 AI 领域的最新开发者动态。无论你是资深研发者,还是对生成式 AI 充满好奇的新手,这份报告都是你不可错过的知识宝典。欢迎大家扫码关注「AI前线」公众号,回复「开发者洞察」领取。

2020-06-09 14:045630

评论

发布
暂无评论
发现更多内容

从任正非的内部信,看系统开发公司如何度过寒冬

CRMEB

深耕隐私计算技术,瓴羊DataTrust团队喜获殊荣

瓴羊企业智能服务

数据可视化系列教程之组件构成

云智慧AIOps社区

前端 低代码 开源项目 数据可视化 可视化大屏

测试需求平台3-登录打通和产品列表功能实现

MegaQi

测试平台开发教程 9月月更

YOLOX-PAI:加速YOLOX,比YOLOV6更快更强

阿里云大数据AI技术

深度学习 模型优化 企业号九月金秋榜

设计模式的艺术 第二十章中介者模式练习(设计一套图形界面类库,包含若干预定义的窗格(Pane)对象,如TextPane、ListPane等,窗格之间不允许直接引用。基于该类库的应用由一个包含一组窗格的窗口(Window)组成,窗口协调窗格之间的行为)

代廉洁

设计模式的艺术

基于 xbot 实现微信关键词自动回复

Hanson

微信 微信机器人 自动回复

Nacos 安装教程(史上最详细保姆级教程)

nacos SpringCloud 9月月更

# 靠谱:开源IM项目OpenIM压测程序介绍-自己动手压测性能和稳定性

Geek_1ef48b

Web3的流支付代表Zebec,熊市布局的价值逻辑

鳄鱼视界

高并发场景下,6种方案,保证缓存和数据库的最终一致性!

C++后台开发

数据库 缓存 高并发 后端开发 C++开发

Linux面试最高频的5个基本问题

千锋IT教育

玖章算术受邀参加红杉Talk「创新的复利」科技专场,共同探讨云计算的前世今生

数据库 数据复制 数据管理 数据备份 玖章算术

一文看懂Mysql锁

六月的雨在InfoQ

MySQL MySQL锁 9月月更 Mysql死锁 Mysql锁粒度

南阳蓝天燃气携手WeLink共创数字蓝天

科技云未来

程序员的摸鱼加速器!

Liam

程序员 前端 测试 后端 Postman

万物皆可集成系列:低代码对接企企云实现数据集成

葡萄城技术团队

k8s自定义controller三部曲之一:创建CRD(Custom Resource Definition)

程序员欣宸

Kubernetes k8s 9月月更

一线技术人应该关注的四种思维能力

阿里巴巴中间件

阿里云 技术文章

15款Python编辑器,你都使用过哪一款

千锋IT教育

maven入门

楠羽

maven 笔记 9月月更

助力企业成就好生意,华为云快成长直播

科技云未来

从零到一,教你搭建「CLIP 以文搜图」搜索服务(二):5 分钟实现原型原创

Zilliz

机器学习 深度学习 搜索引擎

关于链路追踪所需要了解的知识

穿过生命散发芬芳

链路追踪 9月月更

直播预告 | PostgreSQL 内核解读系列第六讲:PostgreSQL 索引介绍(下)

阿里云数据库开源

数据库 postgresql 阿里云 开源 polarDB

构筑校园  “云资环”助力精准防控

科技云未来

新书上市 | 连载 5 年,千万读者追更,这本书讲透了通信背后的故事!

图灵社区

通信技术 科技史

博睿数据携手亚马逊云科技,助您开启全链路可观测之旅

博睿数据

可观测性 智能运维 博睿数据 全链路 亚马逊云科技

华为云WeLink直播助力高校毕业典礼:这届毕业生,我们云上嗨

科技云未来

虚拟机内存管理之内存分配器

字节跳动终端技术

vm 内存 虚拟机 内存管理 内存分配

从用户到开发者是一种思维进化过程 | 访 StarRocks Committer 周威

StarRocks

京东电商搜索中的语义检索与商品排序_数据库_DataFunTalk_InfoQ精选文章