写点什么

360 开源 XDML,超大规模数据与超高维特征机器学习计算平台

  • 2018-12-29
  • 本文字数:1480 字

    阅读完需:约 5 分钟

360开源 XDML,超大规模数据与超高维特征机器学习计算平台

在大数据时代,需要处理的数据都是 TB 级或 PB 级以上,机器学习模型的规模也在不断地增大,机器学习模型的参数的规模可以达到百亿甚至是千亿的级别,如此大的参数规模给现有的机器学习平台带来了前所未有的挑战。同时,高维稀疏数据对于模型的构建也带来了巨大的挑战。


人工智能取得了前所未有的发展,机器学习、深度学习中算法数量也在不断的增加。但是也带来了很多的问题:


  • 特征分析和变换中,工作量大、性能差、成本高等;

  • 难以处理超高维稀疏数据,超规模参数调优难度很大;

  • 目前业界实现的机器学习平台都有各种各样的问题,例如和 Hadoop 生态圈衔接较差,无法很好的与其衔接起来。这些问题一直阻碍着开发者的前行,亟需解决。


针对超大规模机器学习的场景,360 开源了内部的超大规模机器学习计算框架 XDML。XDML 是一款基于参数服务器(Parameter Server),采用专门缓存机制的分布式机器学习平台。它在 360 内部海量规模数据上进行了测试和调优,在大规模数据量和超高维特征的机器学习任务上,具有良好的稳定性,扩展性和兼容性。


GitHub 地址:https://github.com/Qihoo360/XLearning-XDML



XDML 架构设计图

XDML 特性

1. 提供特征分析与变换等功能模块


在现有的机器学习模型的构建中,特征生产与业务和数据高度相关,高度定制,工作量很大。特征分析与变换处理粒度过小,在大数据情形下性能较差,且缺乏一站式的特征分析与变换工具。XDML 能够最大程度地挖掘并行度,结合样本并行+特征并行+算子并行/融合/OnePass 化,显著提升特征工程的性能,支持 TB 级数据 10min 级分析,并且遵循 spark 标准接口。在包含数千个特征的稠密 benchmark 上进行特征分析与变换测试,性能较 Spark MLlib 提升 1000 多倍;XDML 也能很好地适应稀疏数据特征分析。


2. 实现常用的大规模数据量场景下的机器学习算法


超高维度的参数优化,对于开发者算法能力要求较高,而且工作量较大,需要大量的时间和精力进行调参工作。XDML 内化学界最新研究成果,引入南京大学李武军老师提出的全新优化算法 SCOPE,并重构了准线性模型,在效果保持稳定的同时,大幅加速收敛进程,显著提升模型与算法的性能。在 Benchmark 上,相比 LBFGS 性能提升 10 倍左右,相较于 SGD 性能提升 50 多倍。同时,XDML 还对接了一些优秀的开源成果和 360 公司自研成果,站在巨人的肩膀上,博采众长。


3. 充分利用现有的成熟技术,保证整个框架的高效稳定


在互联网领域,技术框架更新迭代十分迅速,XDML 可以与业界成熟的技术无缝衔接,整个框架具有高效的稳定性。


4. 完全兼容 hadoop 生态,和现有的大数据工具实现无缝对接,提升处理海量数据的能力


在 XDML 设计之初,就将与 Hadoop 生态无缝衔接作为其设计目标,解决了大规模高维数据的存储。XDML 具有与目前 Hadoop、Spark 等大数据框架无缝对接的能,同时替换 Spark 原生能力的性能/效果瓶颈,提供更好的大数据框架使用体验,将开发者从繁杂的工作中解脱出来,不必为数据、模型的存储大费周章。


5. 在系统架构和算法层面实现深度的工程优化,在不损失精度的前提下,大幅提高性能


在高维稀疏数据场景中,如何处理千亿级参数训练,百亿乃至千亿级别样本训练中模型的存储、数据如何传输、模型的更新等问题一直是业界急需解决的问题。XDML 具有模型的快速存储能力,高效的数据传输,从多个角度提升了高维稀疏数据场景中,提升模型的训练速度提升整体的性能。

结语

“从开源社区来,并回到开源社区去”一直是开源社区的精神。360 此次开源的内部超大规模机器学习计算框架 XDML,能够为开发者节约学习和操作时间,提高模型训练效率,具有良好的稳定性和兼容性,为开源社区提供了一件利器。


2018-12-29 14:385295
用户头像

发布了 1549 篇内容, 共 733.9 次阅读, 收获喜欢 2521 次。

关注

评论 1 条评论

发布
暂无评论
发现更多内容

数据可视化:部分整体类可视化图表大全

2D3D前端可视化开发

数据分析 数据可视化 数据可视化工具 可视化图表 数据可视化设计

AI 换脸技术:你的照片可能被滥用了!

郑州埃文科技

AI 数据治理

软件测试/测试开发丨Web自动化测试中显式等待的高级使用

测试人

程序员 软件测试 自动化测试 测试开发

技术分享| 融合会议协议大解密

anyRTC开发者

音视频 视频会议 快对讲 H.323 融合会议

超融合产品集成 Kata 虚拟化容器技术的方案演进 | 龙蜥技术

OpenAnolis小助手

开源 容器 虚拟化 龙蜥社区 龙蜥大讲堂

MobPush iOS端合规指南

MobTech袤博科技

GitHub上标星75k+超牛的《Java面试突击离线版》够你润进去了

程序知音

Java java面试 Java进阶 Java面试题 Java面试八股文

易观千帆 | 2023年4月银行APP月活跃用户规模盘点

易观分析

金融 数字经济 手机银行

基于openfaas托管脚本的实践

百度Geek说

数据库 百度 企业号 5 月 PK 榜

Nodejs 应用编译构建提速建议 | 京东云技术团队

京东科技开发者

node.js 编译 前端构建 企业号 5 月 PK 榜

网闸、防火墙、堡垒机三大定义说明

行云管家

防火墙 堡垒机 网闸

阻抗板是否高可靠,华秋有话说

华秋电子

inBuilder今日分享丨系统集成系列之背景与方案概述

inBuilder低代码平台

详解GaussDB(DWS)用户监控原理及应用

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 5 月 PK 榜

3D LED显示屏选购指南

Dylan

3D LED显示屏 避坑指南

数据可视化:相关类可视化图表大全

2D3D前端可视化开发

数据可视化控件 数据可视化工具 可视化数据 可视化图表 数据可视化设计

深度解析 slab 内存池回收内存以及销毁全流程

bin的技术小屋

Linux 内存管理 Linux Kenel 内存池 slab

Github标星78k,Alibaba最新发布的Spring Boot项目实战文档!太强了

Java你猿哥

Java 面试 Spring Boot ssm Spring MVC

手把手教你在昇腾平台上搭建PyTorch训练环境

华为云开发者联盟

人工智能 华为云 昇腾 华为云开发者联盟 企业号 5 月 PK 榜

设计师解放双手之作!3秒生成风景园林效果图,AIGC赋能景观设计

飞桨PaddlePaddle

人工智能 百度飞桨 AIGC Stable Diffusion

性能测试监控指标及分析调优 | 京东云技术团队

京东科技开发者

性能优化 性能测试 企业号 5 月 PK 榜 测试监控

生态伙伴 | 携手深圳科创学院,持续推动项目落地与成长

华秋电子

堡垒机免费版有哪些功能啊?后面需要过等保怎么办?

行云管家

安全运维 运维软件 免费运维

7个工程应用中数据库性能优化经验分享

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 5 月 PK 榜

Bytebase:更好地管理你的 OceanBase 数据库

OceanBase 数据库

数据库 oceanbase

产品经理们,请小心这 5 种错误的职场打开方式!

LigaAI

产品经理 团队协作 研发协作 产品负责人 企业号 5 月 PK 榜

手机一开,说办就办!指尖上的“数字江西”

OceanBase 数据库

数据库 oceanbase

深度学习进阶篇-预训练模型[3]:XLNet、BERT、GPT,ELMO的区别优缺点,模型框架、一些Trick、Transformer Encoder等原理详细讲解

汀丶人工智能

自然语言处理 深度学习 预训练模型 Transformer GPT

揭秘百度IM消息中台的全量用户消息推送技术改造实践

JackJiang

消息推送 即时通讯IM im开发

杜绝开源依赖风险,许可证扫描让高效&合规「两不误」

极狐GitLab

DevOps DevSecOps 开源许可证 极狐GitLab 安全合规

C4D 常用 14 款插件

Finovy Cloud

C4D 3D软件

360开源 XDML,超大规模数据与超高维特征机器学习计算平台_AI&大模型_InfoQ 中文站_InfoQ精选文章