2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

360 开源 XDML,超大规模数据与超高维特征机器学习计算平台

  • 2018-12-29
  • 本文字数:1480 字

    阅读完需:约 5 分钟

360开源 XDML,超大规模数据与超高维特征机器学习计算平台

在大数据时代,需要处理的数据都是 TB 级或 PB 级以上,机器学习模型的规模也在不断地增大,机器学习模型的参数的规模可以达到百亿甚至是千亿的级别,如此大的参数规模给现有的机器学习平台带来了前所未有的挑战。同时,高维稀疏数据对于模型的构建也带来了巨大的挑战。


人工智能取得了前所未有的发展,机器学习、深度学习中算法数量也在不断的增加。但是也带来了很多的问题:


  • 特征分析和变换中,工作量大、性能差、成本高等;

  • 难以处理超高维稀疏数据,超规模参数调优难度很大;

  • 目前业界实现的机器学习平台都有各种各样的问题,例如和 Hadoop 生态圈衔接较差,无法很好的与其衔接起来。这些问题一直阻碍着开发者的前行,亟需解决。


针对超大规模机器学习的场景,360 开源了内部的超大规模机器学习计算框架 XDML。XDML 是一款基于参数服务器(Parameter Server),采用专门缓存机制的分布式机器学习平台。它在 360 内部海量规模数据上进行了测试和调优,在大规模数据量和超高维特征的机器学习任务上,具有良好的稳定性,扩展性和兼容性。


GitHub 地址:https://github.com/Qihoo360/XLearning-XDML



XDML 架构设计图

XDML 特性

1. 提供特征分析与变换等功能模块


在现有的机器学习模型的构建中,特征生产与业务和数据高度相关,高度定制,工作量很大。特征分析与变换处理粒度过小,在大数据情形下性能较差,且缺乏一站式的特征分析与变换工具。XDML 能够最大程度地挖掘并行度,结合样本并行+特征并行+算子并行/融合/OnePass 化,显著提升特征工程的性能,支持 TB 级数据 10min 级分析,并且遵循 spark 标准接口。在包含数千个特征的稠密 benchmark 上进行特征分析与变换测试,性能较 Spark MLlib 提升 1000 多倍;XDML 也能很好地适应稀疏数据特征分析。


2. 实现常用的大规模数据量场景下的机器学习算法


超高维度的参数优化,对于开发者算法能力要求较高,而且工作量较大,需要大量的时间和精力进行调参工作。XDML 内化学界最新研究成果,引入南京大学李武军老师提出的全新优化算法 SCOPE,并重构了准线性模型,在效果保持稳定的同时,大幅加速收敛进程,显著提升模型与算法的性能。在 Benchmark 上,相比 LBFGS 性能提升 10 倍左右,相较于 SGD 性能提升 50 多倍。同时,XDML 还对接了一些优秀的开源成果和 360 公司自研成果,站在巨人的肩膀上,博采众长。


3. 充分利用现有的成熟技术,保证整个框架的高效稳定


在互联网领域,技术框架更新迭代十分迅速,XDML 可以与业界成熟的技术无缝衔接,整个框架具有高效的稳定性。


4. 完全兼容 hadoop 生态,和现有的大数据工具实现无缝对接,提升处理海量数据的能力


在 XDML 设计之初,就将与 Hadoop 生态无缝衔接作为其设计目标,解决了大规模高维数据的存储。XDML 具有与目前 Hadoop、Spark 等大数据框架无缝对接的能,同时替换 Spark 原生能力的性能/效果瓶颈,提供更好的大数据框架使用体验,将开发者从繁杂的工作中解脱出来,不必为数据、模型的存储大费周章。


5. 在系统架构和算法层面实现深度的工程优化,在不损失精度的前提下,大幅提高性能


在高维稀疏数据场景中,如何处理千亿级参数训练,百亿乃至千亿级别样本训练中模型的存储、数据如何传输、模型的更新等问题一直是业界急需解决的问题。XDML 具有模型的快速存储能力,高效的数据传输,从多个角度提升了高维稀疏数据场景中,提升模型的训练速度提升整体的性能。

结语

“从开源社区来,并回到开源社区去”一直是开源社区的精神。360 此次开源的内部超大规模机器学习计算框架 XDML,能够为开发者节约学习和操作时间,提高模型训练效率,具有良好的稳定性和兼容性,为开源社区提供了一件利器。


2018-12-29 14:385266
用户头像

发布了 1542 篇内容, 共 727.7 次阅读, 收获喜欢 2519 次。

关注

评论 1 条评论

发布
暂无评论
发现更多内容

深圳堡垒机生产经营公司哪家靠谱?选哪家好?

行云管家

网络安全 堡垒机 深圳

淘宝商品描述API:深度解析HTML格式内容的策略与技巧

代码忍者

API 接口 API 测试

代理IP在跨境出海业务中的应用

IPIDEA全球HTTP

代理IP 跨境电商 出海

2024 中国开发者调查报告出炉:通义灵码是开发者最常用的 AI 编码辅助工具

阿里云云效

阿里云 云原生 通义灵码

观测云的自动化监控:CRD 资源与自动发现

可观测技术

自动化运维

EZ先享官奔赴海外 见证马自达百年造车基因传承

极客天地

Memecoin的火爆与AMM在Solana上的主导地位

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

中大型集团数字化转型常用软件,电子签章领域契约锁领先行业

数字工具研究

AI 机器人对家长培育孩子好性格有帮助吗?——数业智能心大陆给出答案

心大陆多智能体

育儿 智能体 AI大模型 心理健康 数字心理

GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化

我再BUG界嘎嘎乱杀

Python 编程 数据分析 后端 开发语言

2024 中国开发者调查报告出炉:通义灵码是开发者最常用的 AI 编码辅助工具

阿里巴巴云原生

阿里云 云原生 通义灵码

DBeaver 24.1.4版本发布,原生支持GaussDB!

华为云开发者联盟

数据库 企业号 8 月 PK 榜 企业号2024年8月PK榜

技术架构革新:观测云的 Agent 模型解析

可观测技术

架构设计 数据采集

云原生监控的未来:观测云与 Prometheus 的融合

可观测技术

Promethues 云原生监控

重塑精准营销新纪元:深度解析拍立淘API与用户画像构建的融合之道

代码忍者

API Explorer API 接口 API 测试

Python数据分析:数据可视化(Matplotlib、Seaborn)

我再BUG界嘎嘎乱杀

Python 编程 数据分析 后端 数据可视化

Python使用asyncio包实现异步编程方式

我再BUG界嘎嘎乱杀

Python 编程 后端 异步编程 开发语言

通义灵码:AI 研发趋势与效果提升实践丨SDCon 全球软件技术大会演讲全文整理

阿里巴巴云原生

阿里云 AI 云原生 通义灵码

通义灵码:AI 研发趋势与效果提升实践丨SDCon 全球软件技术大会演讲全文整理

阿里云云效

阿里云 云原生 通义灵码

跨部门协作:观测云在促进业务与技术团队合作中的作用

可观测技术

团队协作

语聊APP出海中东,Yalla、WePlay、YoYo、SoulChill、YoHo 中东语聊APP的关键成功因素

山东布谷科技胡月

语音厅平台搭建 语音厅源码 语音直播平台开发 语聊APP源码 语音聊天室APP

百万级超长序列大模型训练如何加速,硬核解读MindSpeed方案

华为云开发者联盟

大模型 #人工智能 企业号 8 月 PK 榜 企业号2024年8月PK榜

360开源 XDML,超大规模数据与超高维特征机器学习计算平台_AI&大模型_InfoQ 中文站_InfoQ精选文章