写点什么

阿里:Behavior Sequence Transformer 解读

  • 2019-12-02
  • 本文字数:1663 字

    阅读完需:约 5 分钟

阿里:Behavior Sequence Transformer 解读

背景和介绍

现在深度学习已经广泛应用到了各种 CTR 预估模型中,但是大都数模型的输入只是 concat 不同的特征,而忽视了用户历史行为本身的序列特征。比如一个用户很有可能买了苹果手机后,会买手机套,买了裤子之后会选择继续买个配套的鞋子。而之前一些模型比如 wide&deep,就没有利用用户行为历史序列中的 order information。DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但仍然未考虑用户行为序列背后的序列性质。


因此为了解决上述问题,本文尝试将 NLP 领域中大放异彩的 Transformer 模型来做推荐任务。具体:使用 self-attention 模块来学习用户行为历史序列中各个 item 的序列信息。

模型

  • 问题建模:给定一个用户 u 的行为序列:S(u) = {v1,v2, …,vn },学习一个函数 F 用于预测用户 u 点击 item vt 的概率。其它特征包括:user profile, context, item 和 cross features,如下图所示



  • 模型结构:

  • 1.Embedding Layer:左侧部分通过 embedding 层将所有的 other features 映射成固定维度的向量,然后 concat 起来。另外,该模型也将行为序列中的每个 Item(包括目标 Item)通过相同的 embedding 层映射成低维度的向量。这里需要注意的是,每个 Item 通过两部分来表示:“序列 item 特征”(红色部分)和“位置特征”(深蓝色),其中,“序列 item 特征”包括 item_id 和 category_id(item 通过包括上百个特征,但是 item-id 和 category_id 两个特征对于 performance 来说就已经够了)。位置特征用来刻画用户历史行为序列中的顺序信息,文中将“位置”作为中每个 item 的另一个输入特征,然后将其投射为低维向量。第 i 个位置的位置特征计算方式为 pos(vi)=t(vt)-t(vi),其中,t(vt) 表示推荐的时间戳,t(vi) 表示用户点击商品 vi 时的时间戳。

  • 2.Transformer layer:对于每个 item 抽取了一个更深层次的 representation,用于捕捉该 item 和历史行为序列中的其他 item 的关系。

  • Self-attention:Transformer 层中的 multi-head attention 模块输出:

  • 其中 headi 为:



self-attention 的计算公式为:



  • Point-wise Feed-Forward Network:目的是增加非线性。在 self-attention 和 FFN 中都使用了 dropout 和 LeakyReLU,最终 self-attention 和 FFN 的输出为:

  • Stacking the self-attention block:上面的两步操作被称为一个 self-attention 单元。为了抽取出 item 序列中更加复杂的潜在关联特征,该模型堆叠了几层 self-attention 单元:


  1. MLP layers and Loss function: 将所有的 embedding 进行拼接,输入到三层的神经网络中,并最终通过 sigmoid 函数转换为 0-1 之间的值,代表用户点击目标商品的概率。loss 函数:


实验结果

其中,b 表示 Transformer 的 block 堆叠的层数,论文里实验了 1 层、2 层和 3 层的效果,最终 1 层的效果最好。

总结

DIN、DIEN、DSIN 和本文 BST 模型的区别和联系


DIN 模型使用注意力机制来捕获目标商品与用户先前行为序列中商品之间的相似性,但是未考虑用户行为序列背后的序列性质,并且未捕捉用户兴趣的动态变化性。


DIEN 主要解决 DIN 无法捕捉用户兴趣的动态变化性的缺点,提出了兴趣抽取层 Interest Extractor Layer、兴趣进化层 Interest Evolution Layer。


DSIN 针对 DIN 和 DIEN 没考虑用户历史行为中的会话信息,因为在每个会话中的行为是相近的,而在不同会话之间差别是很大的。DSIN 主要是在 session 层面上来利用用户的历史行为序列信息。


BST 模型通过 Transformer 模型来捕捉用户历史序列中各个 item 的关联特征,并且通过加入待推荐的商品 item,也可抽取出行为序列中商品与待推荐商品之间的相关性。


参考文献:


Behavior Sequence Transformer for E-commerce Recommendation in Alibaba


https://www.jianshu.com/p/caa2d87cb78c


Deep Interest Network for Click-Through Rate Prediction


Deep Interest Evolution Network for Click-Through Rate Prediction


Deep Session Interest Network for Click-Through Rate Prediction


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/72018969


2019-12-02 16:221572

评论

发布
暂无评论
发现更多内容

SD-WAN为什么成为小企业的首选

Ogcloud

SD-WAN 企业组网 SD-WAN组网 SD-WAN服务商 SDWAN

Ceph PG状态介绍

天翼云开发者社区

分布式 存储 Ceph

淘宝店铺商品搜索API返回值全面解析:洞悉店铺全貌

技术冰糖葫芦

API API 编排 API 文档 API 协议

使用ChatGPT解决开发问题

京东科技开发者

多项第一!天翼云霸气登顶政务公有云市场

极客天地

生产环境Nginx配置

源字节1号

小程序 开源 前端 后端

快照技术对比学习

天翼云开发者社区

云计算 快照技术

云容灾关键技术点简介

天翼云开发者社区

云计算 云服务 容灾备份

IPIDEA分享:并发和并行的区别

IPIDEA全球HTTP

并行 技术宅 并发’

Monaco Editor使用时右键功能菜单汉化

京东科技开发者

全链路监控革新:观测云如何助力企业运维升级

可观测技术

观测云:开源生态的桥梁

可观测技术

开源

Bonree ONE赋能汽车行业 重塑可观测性体验

博睿数据

喜讯!云起无垠入选《2024年中国网络安全市场全景图》

云起无垠

iPaaS 平台的发展方向

RestCloud

数字化转型 数据集成平台 企业集成 ipaas

测试工程师在敏捷项目中扮演什么角色?

禅道项目管理

敏捷开发 软件测试 软件开发 迭代 测试人员

手把手教你搭建Docker私有仓库Harbor

不在线第一只蜗牛

Docker 容器 仓库

借助 API 接口深挖 1688 商品详情的奥秘

Noah

TDengine 3.3.2.0 发布:新增 UDT 及 Oracle、SQL Server 数据接入

TDengine

RTX 4090为什么被称为性能之王?

Finovy Cloud

显卡 显卡选择 #GPU

ISA-L库调研

天翼云开发者社区

大数据 存储 simd

淘宝店铺商品搜索API返回值全面解析:洞悉店铺全貌

技术冰糖葫芦

API 编排 API 文档 API 协议

观测云:全球监控布局的高效能选择

可观测技术

阿里:Behavior Sequence Transformer 解读_语言 & 开发_Alex-zhai_InfoQ精选文章