AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

高德亿级流量接入层服务的演化之路

  • 2020-03-04
  • 本文字数:3078 字

    阅读完需:约 10 分钟

高德亿级流量接入层服务的演化之路

2019 杭州云栖大会上,高德地图技术团队向与会者分享了包括视觉与机器智能、路线规划、场景化/精细化定位时空数据应用、亿级流量架构演进等多个出行技术领域的热门话题。现场火爆,听众反响强烈。我们把其中的优秀演讲内容整理成文并陆续发布在「高德技术」公众号上,本文为其中一篇。


2019 杭州云栖大会高德技术专场讲师系列:



阿里巴巴资深技术专家孙蔚在高德技术专场做了题为 《高德亿级流量接入层服务的演化之路》 的演讲,主要分享了接入层服务在高德业务飞速发展过程中,为应对系统和业务的各方面挑战所做的相关系统架构设计,以及系统在赋能业务方面的思考和未来规划。


以下为孙蔚演讲内容的简版实录


高德地图的 DAU(日活)已经过亿,服务量级是数百亿级。高德的应用场景,比如实时公交、实时路况、导航、司乘位置的同时展示等,对延迟非常敏感。如何做到高可用、高性能的架构设计,高德在实践中总结了一套解决方案。


今天主要分享三个方面的内容:


  • 接入层定位思考与挑战

  • 高可用、高性能的架构设计

  • 高德服务端的思考及规划

一、接入层定位思考与挑战

首先介绍下 Gateway,从架构上看,Gateway 在中间位置,上层是应用端,下层是引擎,例如驾车引擎、步导引擎等等。目前已接入 80+应用,500 多个 API 透出,QPS 峰值 60W+。


从 Gateway 的定位来思考,作为网关,最重要的就是稳定,同时能提效和赋能。一句话概括:如何在资源最少的情况下,在保证稳定的前提下,以最快速度帮助业务的达成,这就是服务端的定位。


高德的网关设计挑战在于每天数百亿级的流量过来,场景对延迟又特别敏感。举个例子,很多开发者和应用都在使用高德定位服务,定位服务架构挑战 5 毫秒内需返回。


为了解决这些问题,高德做过一次比较大的系统架构升级,主要做了几方面的工作。首先是 流式、全异步化改造。机器数量减少一半,性能提升一倍,通过这个架构升级达到了。


其次是 加强基础支撑能力建设,为配合引擎提效,做了接口聚合、数据编排和流量打标与分流。


此外,为了提供服务稳定性,同时提升单元性能,做了 高德单元化网关解决方案。最主要是方便其他业务快速实现单元化。

二、高可用、高性能的架构设计

重构前比较严重的问题是服务性能低,BC 服务器综合性能在 1200QPS。稳定性风险比较高,特别是网络抖动,如何保证整个系统的稳定性,这可能是最大的挑战。所以,对于整个架构的思考,最主要的事情是做异步化


高德接入层网关演进过程主要经历了 3 个阶段:



1. 异步+Pipeline 架构改造


1)流式、全异步化架构



如上图 Pipeline 的架构模型,我们在 2016 年开始做,那时候还没有很流行,我们自己实现了异步认知,再加入 Pipeline 架构模型。


采用流式、全异步化的架构模型,使用 Tomcat nio+Async Servlet + AsyncHttpClient。Gateway QPS 峰值 60W,服务 rt 控制在 1ms 左右。



整体服务是 Pipeline 架构,在服务的上行和下行关键节点进行了扩展点设计,利用该扩展点设计,解决了接口的历史包袱问题。使用到的相关工具类库也要注意异步性能问题,在全链路异步化的时候,最核心的是相关的工具,也必须解决异步化的问题。要不然就是内部有阻塞,基本上会带来整个链路的阻塞。


收益:单机性能提升了 400%,服务延迟低于 2 毫秒,现在基本上都是在 1 毫秒左右。


2)反应式编程探索:Vert.X && Webflux



我们也做了反应式编程,主要用 Vert.X。我们一些同步调用的场景需要修改为异步,他比较特殊,RPC 的依赖比较少,主要是同步依赖 RDB、Mongodb、Http 接口等,这时候我们用 Vert.X 来做 IO 任务及数据编排,Http 异步调用还是用的 AsyncHttpClient。最后的效果,QPS 大概在 5 万左右,RT 是 22 毫秒左右。


高德现在的打车业务中有一个业务场景,服务里要调服务 A、服务 B、服务 C、服务 D、服务 E、服务 F,最多的时候要调 27 个服务,还要做业务逻辑。用 Webflux 更合适一些,不仅可以做到异步化改造,还可以用它做复杂业务逻辑编排。使用 Webflux 可以直接使用 Netty 处理链接、业务层用 Reactor 交互,全反应式编程,IO 线程与业务线程互不阻塞,最大限度压榨 CPU 资源。


在这个项目里,反应式编程最终达到的效果,QPS 提升了 3 倍,RT 降低 30%。


2. API 聚合、数据编排与打标分流



面对新的业务,压力越来越大,并且每次迭代的速度要求越来越快。目前 API 数量超过 500+,接口数据项超过 400。对于 API 的定制化、复用,怎么解?就是通过 API 聚合和数据编排。



打标分流是另外一个挑战,随着业务的发展,很多服务都需要做架构升级,需要做重构,算法和模型也需要不断的调优,这时候对于业务或者研发来说,对业务参数进行打标和分流,可以降低风险。


3. 高德单元化网关


1)高德单元化网关:路由策略


对于 业务异地多活、单元化需求,我们做了单元化路由的解决方案,这里最核心的,给业务提供的能力是:当有用户请求过来时,能够实现就近接入能力,尽量减少跨单元调用。



单元路由主要帮助业务解决异地多活的能力,我们支持的路由策略,主要分为两种:第一种是基于路由表,第二种是基于取模策略。如果你的应用对就近接入需求比较强烈,对延迟敏感,就可以用基于路由表策略。如果是对多单元同写敏感度高的场景,用取模策略更合适。两种我们都支持。


2)高德单元化网关:路由计算



上图是我们做的路由计算核心逻辑图。具体而言注意以下几点:1)单元映射,用户划分分组、分组指向单元映射的方式完成用户到单元的绑定关系,单元切换时只切换分组到单元的映射关系;2)路由计算,多数情况下通过 BloomFilter 计算所在分组,新用户则会采用取模策略计算所在分组;3)跨单元路由,BloomFilter 的误命中会导致跨单元路由;新用户采用取模策略也将导致跨单元路由,直至路由表更新;4)数据结构,基于性能、空间、灵活性和准确率方面的综合考虑,在 BloomFilter 、BitMap 和 MapDB 多种方案中,选择 BloomFilter,万分之几的误命中率导致的跨单元路由在业务可接受范围内。


3)高德单元化网关:分组优化



这个是目前正在迭代做的网关虚拟分组优化,分为 3 单元*4 片,每个单元分成四个片。


目标提高单元划分的准确性,同时每次访问需要 7 次计算优化为 3 次,同时解决以前如果发现单元出现问题流量只能全切,现在可灰度切量。


目前使用的案例有云同步、用户等。用户单元化的案例,最终的收益是,整个单元计算耗时小于 2 毫秒,跨单元路由比例低于 3%。

三、思考及规划**

Gateway 现在是集中化的场景,怎么变成分布式的解决方案?



这方面我们也做了尝试。分布式网关一般有两种实现路径:第一种是做 SDK,第二种是做边车或服务网格的方式。SDK 方式的分布式网关我们已经在部分场景使用,缺点是对异构支撑困难,和应用的隔离性不好,好处是开发比较快,目前每天也有过百亿的请求在访问。


边车或者服务网格其实是我们架构的终局,他能解决异构、应用系统隔离性等问题。因为:


  • Gateway Sidecar 与业务应用运行于同服务器的独立进程,既具有分布式部署优势又具备较好的隔离性;

  • Gateway Control Manager 负责管理分布式 Gateway Sidecar,相当于 Service Mesh 的控制面,主要负责网关配置和元数据管理、服务高可用以及统计打点、异常监控和报警等。


服务网格优势是去中心化的分布式部署方式,天然就具备高可用性和水平扩展性,无单点和性能瓶颈问题,缺点是不太适合实现聚合 API 的实现。服务网格我们目前是基于蚂蚁 SOFA 来做,主要用来解决异构 RPC 调用的问题。


最后给个建议,根据实际经验,大家如果在做服务或 Gateway 相关的事,如果你面临的挑战是机器数量减少一半,性能提升一倍,全链路异步化架构可能会对你有所帮助。


2020-03-04 14:492773

评论

发布
暂无评论
发现更多内容

ArkUI-X平台差异化

龙儿筝

YashanDB面向云计算平台的数据库优化方案

数据库砖家

数据库‘’

YashanDB数据库的常见问题与解决办法

数据库砖家

数据库‘’

YashanDB数据库的最佳实践及实施方案总结

数据库砖家

数据库‘’

YashanDB数据库安全机制详解及企业应用建议

数据库砖家

数据库‘’

YashanDB数据库的维护成本与效益分析

数据库砖家

数据库‘’

YashanDB数据库多版本控制功能介绍与应用

数据库砖家

数据库‘’

YashanDB数据库多语言支持及国际化方案介绍

数据库砖家

数据库‘’

YashanDB数据库索引优化技术详解

数据库砖家

YashanDB与大数据分析平台集成方案详解

数据库砖家

YashanDB数据库性能调优实用技巧分享

数据库砖家

如何利用YashanDB实现业务数据的高效管理?

数据库砖家

YashanDB数据库实时备份技术及恢复操作指南

数据库砖家

数据库‘’

YashanDB数据库实时监控系统设计与实现

数据库砖家

数据库‘’

YashanDB索引优化详解,加速查询效率的实用方法

数据库砖家

企业为什么选择YashanDB数据库?七大核心优势解析

数据库砖家

巧用YashanDB数据库实现海量数据快速查询

数据库砖家

如何高效利用YashanDB数据库进行数据挖掘

数据库砖家

ArkUI-x跨平台Bridge最佳实践

龙儿筝

YashanDB数据库实现高可用负载均衡配置说明

数据库砖家

数据库‘’

YashanDB数据库事务管理详解,保证数据一致性

数据库砖家

数据库‘’

YashanDB数据库数据迁移的步骤与注意事项

数据库砖家

YashanDB支持的数据导入导出工具介绍

数据库砖家

YashanDB数据库功能与应用场景全面介绍

数据库砖家

数据库‘’

YashanDB数据库与人工智能结合的应用前景

数据库砖家

YashanDB数据库与数据可视化的完美结合

数据库砖家

如何进行YashanDB的安全审计

数据库砖家

确保YashanDB高可用性的实用策略

数据库砖家

YashanDB如何支持企业的数据分析与决策支持?

数据库砖家

数据库‘’

YashanDB数据库索引优化:提升查询性能的核心技术

数据库砖家

企业如何使用YashanDB实现数据资产最大化?

数据库砖家

高德亿级流量接入层服务的演化之路_文化 & 方法_高德技术_InfoQ精选文章