写点什么

Druid Segment Balance 及其代价计算函数分析

  • 2020-03-18
  • 本文字数:5890 字

    阅读完需:约 19 分钟

Druid Segment Balance 及其代价计算函数分析

一、引言

Druid 的查询需要有实时和历史部分的 Segment,历史部分的 Segment 由 Historical 节点加载,所以加载的效率直接影响了查询的 RT(不考虑缓存)。查询通常需要指定一个时间范围[StartTime, EndTime],该时间范围的内所有 Segment 需要由 Historical 加载,最差的情况是所有 Segment 不幸都储存在一个节点上,加载无疑会很慢;最好的情况是 Segment 均匀分布在所有的节点上,并行加载提高效率。所以 Segment 在 Historical 集群中分布就变得极为重要,Druid 通过 Coordinator 的 Balance 策略协调 Segment 在集群中的分布。


本文将分析 Druid 的 Balance 策略、源码及其代价计算函数,本文使用 Druid 的版本是 0.12.0。

二、Balance 方法解析

2.1 Balance 相关的配置

Druid 目前有三种 Balance 算法: cachingCost, diskNormalized, Cost, 其中 cachingCost 是基于缓存的,diskNormalized 则是基于磁盘的 Balance 策略,本文不对前两种展开篇幅分析, Druid Coordinator 中开启 cost balance 的配置如下:


druid.coordinator.startDelay=PT30Sdruid.coordinator.period=PT30S 调度的时间druid.coordinator.balancer.strategy=cost 默认
动态配置:maxSegmentsToMove = 5 ##每次Balance最多移动多少个Segment
复制代码

2.2 Cost 算法概述

Cost 是 Druid 在 0.9.1 开始引入的,在 0.9.1 之前使用的 Balance 算法会存在 Segment 不能快速均衡,分布不均匀的情况,Cost 算法的核心思想是:当在做均衡的时候,随机选择一个 Segment(假设 Segment A ), 依次计算 Segment A 和 Historical 节点上的所有 Segment 的 Cost,选取 Cost 值最小的节点,然后到该节点上重新加载 Segment。


2.3 源码和流程图分析

以下会省略一些不必要的代码


DruidCoordinatorBalancer 类


@Overridepublic DruidCoordinatorRuntimeParams run(DruidCoordinatorRuntimeParams params){  final CoordinatorStats stats = new CoordinatorStats();  // 不同tier层的分开Balance  params.getDruidCluster().getHistoricals().forEach((String tier, NavigableSet<ServerHolder> servers) -> {   balanceTier(params, tier, servers, stats);  });  return params.buildFromExisting().withCoordinatorStats(stats).build();}
复制代码


DruidCoordinatorBalancer 类的 balanceTier 方法,主要是均衡入口函数


private void balanceTier(DruidCoordinatorRuntimeParams params, String tier, SortedSet<ServerHolder> servers,CoordinatorStats stats){  final BalancerStrategy strategy = params.getBalancerStrategy();  final int maxSegmentsToMove = params.getCoordinatorDynamicConfig().getMaxSegmentsToMove();
currentlyMovingSegments.computeIfAbsent(tier, t -> new ConcurrentHashMap<>());
final List<ServerHolder> serverHolderList = Lists.newArrayList(servers);
//集群中只有一个 Historical 节点时不进行Balance if (serverHolderList.size() <= 1) { log.info("[%s]: One or fewer servers found. Cannot balance.", tier); return; }
int numSegments = 0; for (ServerHolder server : serverHolderList) { numSegments += server.getServer().getSegments().size(); }
if (numSegments == 0) { log.info("No segments found. Cannot balance."); return; } long unmoved = 0L; for (int iter = 0; iter < maxSegmentsToMove; iter++) { //通过随机算法选择一个候选Segment,该Segment会参与后面的Cost计算 final BalancerSegmentHolder segmentToMove = strategy.pickSegmentToMove(serverHolderList);
if (segmentToMove != null && params.getAvailableSegments().contains(segmentToMove.getSegment())) { //找Cost最小的节点,Cost计算入口 final ServerHolder holder = strategy.findNewSegmentHomeBalancer(segmentToMove.getSegment(), serverHolderList); //找到候选节点,发起一次Move Segment的任务 if (holder != null) { moveSegment(segmentToMove, holder.getServer(), params); } else { ++unmoved; } } } ......}
复制代码


Reservoir 随机算法,随机选择一个 Segment 进行 Balance。Segment 被选中的概率:


public class ReservoirSegmentSampler{
public BalancerSegmentHolder getRandomBalancerSegmentHolder(final List<ServerHolder> serverHolders) { final Random rand = new Random(); ServerHolder fromServerHolder = null; DataSegment proposalSegment = null; int numSoFar = 0;
//遍历所有List上的Historical节点 for (ServerHolder server : serverHolders) { //遍历一个Historical节点上所有的Segment for (DataSegment segment : server.getServer().getSegments().values()) { int randNum = rand.nextInt(numSoFar + 1); // w.p. 1 / (numSoFar+1), swap out the server and segment // 随机选出一个Segment,后面的会覆盖前面选中的,以最后一个被选中为止。 if (randNum == numSoFar) { fromServerHolder = server; proposalSegment = segment; } numSoFar++; } } if (fromServerHolder != null) { return new BalancerSegmentHolder(fromServerHolder.getServer(), proposalSegment); } else { return null; } }}
复制代码


继续调用到 CostBalancerStrategy 类的 findNewSegmentHomeBalancer 方法,其实就是找最合适的 Historical 节点:


@Overridepublic ServerHolder findNewSegmentHomeBalancer(DataSegment proposalSegment, List<ServerHolder> serverHolders){  return chooseBestServer(proposalSegment, serverHolders, true).rhs;}
protected Pair<Double, ServerHolder> chooseBestServer( final DataSegment proposalSegment, final Iterable<ServerHolder> serverHolders, final boolean includeCurrentServer){ Pair<Double, ServerHolder> bestServer = Pair.of(Double.POSITIVE_INFINITY, null);
List<ListenableFuture<Pair<Double, ServerHolder>>> futures = Lists.newArrayList();
for (final ServerHolder server : serverHolders) { futures.add( exec.submit( new Callable<Pair<Double, ServerHolder>>() { @Override public Pair<Double, ServerHolder> call() throws Exception { //计算Cost:候选Segment和Historical节点上所有Segment的cost和 return Pair.of(computeCost(proposalSegment, server, includeCurrentServer), server); } } ) ); }
final ListenableFuture<List<Pair<Double, ServerHolder>>> resultsFuture = Futures.allAsList(futures); final List<Pair<Double, ServerHolder>> bestServers = new ArrayList<>(); bestServers.add(bestServer); try { for (Pair<Double, ServerHolder> server : resultsFuture.get()) { if (server.lhs <= bestServers.get(0).lhs) { if (server.lhs < bestServers.get(0).lhs) { bestServers.clear(); } bestServers.add(server); } }
//Cost最小的如果有多个,随机选择一个 bestServer = bestServers.get(ThreadLocalRandom.current().nextInt(bestServers.size())); } catch (Exception e) { log.makeAlert(e, "Cost Balancer Multithread strategy wasn't able to complete cost computation.").emit(); } return bestServer;}
protected double computeCost(final DataSegment proposalSegment, final ServerHolder server,final boolean includeCurrentServer){ final long proposalSegmentSize = proposalSegment.getSize();
// (optional) Don't include server if it is already serving segment if (!includeCurrentServer && server.isServingSegment(proposalSegment)) { return Double.POSITIVE_INFINITY; }
// Don't calculate cost if the server doesn't have enough space or is loading the segment if (proposalSegmentSize > server.getAvailableSize() || server.isLoadingSegment(proposalSegment)) { return Double.POSITIVE_INFINITY; }
// 初始cost为0 double cost = 0d;
//计算Cost:候选Segment和Historical节点上所有Segment的totalCost cost += computeJointSegmentsCost( proposalSegment, Iterables.filter( server.getServer().getSegments().values(), Predicates.not(Predicates.equalTo(proposalSegment)) ) );
// 需要加上和即将被加载的Segment之间的cost cost += computeJointSegmentsCost(proposalSegment, server.getPeon().getSegmentsToLoad());
// 需要减掉和即将被加载的 Segment 之间的 cost cost -= computeJointSegmentsCost (proposalSegment, server.getPeon().getSegmentsMarkedToDrop());
return cost;}
复制代码


开始计算:


static double computeJointSegmentsCost(final DataSegment segment, final Iterable<DataSegment> segmentSet){  double totalCost = 0;  // 此处需要注意,当新增的Historical节点第一次上线的时候,segmentSet应该是空,所以totalCost=0最小  // 新增节点总会很快的被均衡  for (DataSegment s : segmentSet) {   totalCost += computeJointSegmentsCost(segment, s);  }  return totalCost;}
复制代码


进行一些处理:1)Segment 的 Interval 毫秒转换成 hour;2)先计算了带 lambda 的 x1, y0, y1 的值。


public static double computeJointSegmentsCost(final DataSegment segmentA, final DataSegment segmentB){  final Interval intervalA = segmentA.getInterval();  final Interval intervalB = segmentB.getInterval();
final double t0 = intervalA.getStartMillis(); final double t1 = (intervalA.getEndMillis() - t0) / MILLIS_FACTOR; //x1 final double start = (intervalB.getStartMillis() - t0) / MILLIS_FACTOR; //y0 final double end = (intervalB.getEndMillis() - t0) / MILLIS_FACTOR; //y1
// constant cost-multiplier for segments of the same datsource final double multiplier = segmentA.getDataSource().equals(segmentB.getDataSource()) ? 2.0 : 1.0;
return INV_LAMBDA_SQUARE * intervalCost(t1, start, end) * multiplier;}
复制代码


真正计算 cost 函数的值


public static double intervalCost(double x1, double y0, double y1){  if (x1 == 0 || y1 == y0) {   return 0;  }
// 保证Segment A开始时间小于B的开始时间 if (y0 < 0) { // swap X and Y double tmp = x1; x1 = y1 - y0; y1 = tmp - y0; y0 = -y0; }
if (y0 < x1) { // Segment A和B 时间有重叠的情况,这个分支暂时不分析 ....... } else { // 此处就是计算A和B两个Segment之间的cost,代价计算函数:See https://github.com/druid-io/druid/pull/2972 final double exy0 = FastMath.exp(x1 - y0); final double exy1 = FastMath.exp(x1 - y1); final double ey0 = FastMath.exp(0f - y0); final double ey1 = FastMath.exp(0f - y1);
return (ey1 - ey0) - (exy1 - exy0); }}
复制代码

2.4 代价计算函数分析

现在我们有 2 个 Segment, A 和 B,需要计算他们之间的代价,假设 A 的 start 和 end 时间都是小于 B 的。


2.4.1 Cost 函数介绍

Cost 函数的提出请参考 Druid PR2972(https://github.com/druid-io/druid/pull/2972):


其中 是 Cost 函数的半衰期


为了弄清楚这个 Cost 函数以及影响 Cost 值的因素?我们先使用一些常用的参数配置:


假设 1:Segment A 的 Interval 是 1 小时,即 , 得到:


$x_1 = \frac{(A_{end}-A_{start})log_e2}{24Hour} = \frac{log_e2}{24}$


假设 2:Segment B 的 Interval 也是 1 小时, 得到:


假设 3:Segment B 和 A start 时间相差了 t 个小时,得到:


$y_0 = \frac{tHourlog_e2}{24*Hour} = \frac{t}{24}*log_e2$


在实际的代码中, 的计算已经放到了

2.4.2 计算 Cost 函数


根据假设 2,得到:


继续简化,得到:


根据假设 1,得到:


根据假设 3,得到:


继续简化,得到:


2.4.5 小结

根据上诉 cost 函数化简的结果,当 Segment A 和 B 的 Interval 都是 1 小时的情况下:Segment A 和 B 时间相距越大 Cost 越小,它们就越可能共存在同一个 Historical 节点。这也和本文开始时候提出的时间相邻的 Segment 存储在不同的节点上让查询更快相呼应。

三、总结

Druid 的 balance 机制,主要解决 segments 数据在 history 节点的分布问题,这里的优化主要针对于查询做优化,一般情况下,用户的某一次查询针对的是一个时间范围内的多个 Segment 数据, cost 算法的核心思想是,尽可能打散 Segment 数据分布,这样在一次查询设计多个连续时间 Segment 数据的时候能够利用多台 history server 的并行处理能力,分散系统开销,缩短查询 RT.


2020-03-18 19:54866

评论

发布
暂无评论
发现更多内容

webpack打包过程如何调试?

汪子熙

前端 前端开发 webpack 28天写作 12月日更

云图说|初识数据库和应用迁移UGO

华为云开发者联盟

数据库 华为云 UGO 异构迁移

利用极狐GitLab DevSecOps 功能检测 log4j 的多种方式

极狐GitLab

一文带你梳理Clang编译步骤及命令

华为云开发者联盟

编译 LLVM Clang编译 Clang 编译命令

Go编译原理系列2(词法分析&语法分析基础)

书旅

Go 后端 编译原理

轻松驾驭EB级千万QPS集群,TDSQL新敏态引擎元数据管控与集群调度的演进之路

腾讯云数据库

tdsql 国产数据库

重装上阵——Graviton2提升Aurora性价比

亚马逊云科技 (Amazon Web Services)

Data

蓝格赛(中国)用TDengine落地聚合查询场景,效果如何?

TDengine

数据库 tdengine 后端

React进阶(十一):create-react-app脚手架关闭 eslint 提醒

No Silver Bullet

React 12月日更 creat-react-app

发布你的开源软件到 Ubuntu PPA

hedzr

#Ubuntu Debian packaging ppa

喜提双奖 | 旺链科技彰显综合硬实力!

旺链科技

区块链 产业区块链 供应链

盘点 2021|不忘初心,扬风起航

小鲍侃java

盘点2021

一文详解TDSQL PG版Oracle兼容性实践

腾讯云数据库

tdsql 国产数据库

解析Redis操作五大数据类型常用命令

华为云开发者联盟

数据库 redis string 数据类型 getset

dart系列之:手写Library,Library编写最佳实践

程序那些事

flutter dart 程序那些事 12月日更

JDK ThreadPoolExecutor核心原理与实践

vivo互联网技术

jdk ThreadPoolExecutor Java 开发

前沿干货!深度揭秘TDSQL新敏态引擎Online DDL技术原理

腾讯云数据库

tdsql 国产数据库

DM 分库分表 DDL “悲观协调” 模式介绍丨TiDB 工具分享

PingCAP

鲲鹏HCIA认证之初识鲲鹏

桥哥技术之路

鲲鹏

(转)前端开发之MySQL分区表中的性能BUG

@零度

MySQL 前端

元宇宙地产:品牌和投资者的大好机会?

devpoint

以太坊 NFT 元宇宙 12月日更

跟着动画学Go数据结构之堆排序

宇宙之一粟

golang 数据结构 排序算法 Go 语言 12月日更

又拿奖了!腾讯云原生数据库TDSQL-C斩获2021PostgreSQL中国最佳数据库产品奖

腾讯云数据库

tdsql 国产数据库

「山东城商行联盟」数据库准实时数据采集系统上线,DataPipeline助力城市商业银行加快数字化转型

DataPipeline数见科技

数据库 中间件 数据同步 数据融合 数据管理

MySQL 中 blob 和 text 数据类型详解

Simon

MySQL

XEngine:深度学习模型推理优化

华为云开发者联盟

深度学习 模型推理 显存优化 计算优化 XEngine

java开发之SSM开发框架

@零度

Java ssm

​使用 Amazon Neptune 通过数据仓库构建知识图谱,借此补充商务智能体系

亚马逊云科技 (Amazon Web Services)

Data

一个简单的单体服务流量标记demo

zuozewei

Java 性能测试 全链路压测 12月日更

如何将Amazon RDS与Amazon Aurora数据库迁移至Graviton2?

亚马逊云科技 (Amazon Web Services)

Data

内核干货不容错过,龙蜥内核的Load Averages剖析直播回顾上线了

OpenAnolis小助手

Linux Kenel 内核 龙蜥社区

Druid Segment Balance 及其代价计算函数分析_文化 & 方法_zhaojiandong_InfoQ精选文章