写点什么

Inside Tensorflow 之:tf.keras part1

  • 2019-11-29
  • 本文字数:1474 字

    阅读完需:约 5 分钟

Inside Tensorflow之:tf.keras part1

最近 keras 之父 Francois Chollet 分享了 TensorFlow 中 tf.keras 接口的一些高端的用法,下面就让我们了解一下:


首先,给演讲来个概况:



接下来是介绍 tf.keras 的架构:



下面首先介绍 Layer 类,这里可以看到其实在 Layer 中也可以实现 losses 和 metrics 的追踪功能。



那么 Layer 中没实现的功能包括:不涉及梯度的计算;设备指定;Tensor 变量的维度检查(必须输入和输出的 Tensor 第一维度是 batch N);类型检查



下面讲到了如何自定义自己的 Layer 类,有两种方式,下面是最简单的一种,这种方式在构建时是会根据传入的参数 input_dim 推断出 input 的 shape。



而下面这种方式,在构造时时推断不出 input 的 shape,必须等到调用该 Layer 层时才触发 build 函数去构建可训练的参数,调用 call 函数去做 inference。



当然,Layer 中也可以声明 non_trainable 的变量:



另外,Layer 也是可以嵌套使用的,就是在定义一个新的 Layer 类时去调用另外一个 Layer 类:



定义完 Layer 之后,那么怎么使用它进行 inference 和训练呢?其实流程都是大致固定的,定义 inference 结构,loss 函数,优化器。然后遍历 dataset,求梯度最后更新。



上面这些知识其实都是 Layer 的基本用法啦,让我们随着大佬的视频走的更远,飞的更高点,哈哈。


首先介绍的是在 Layer 中实现对 losses 追踪功能。




那么怎么将这个 loss 加到 loss 函数中呢?其实也就是本来 model 的 loss+model.losses(模型可追踪的 loss)



下面介绍了怎么让 Layer 类可序列化:在定义的时候加上 get_config 函数



另外在定义 Layer 的时候,call 函数有一个特别重要的参数 Training,用来指示 train 模式和非 train 模式下的区别,这对于 Batch_normalization 来说就很有用:



讲完了 Layer 类的定义,下面该轮到 Model 类的讲解了:



Model 类可以处理一些 top-level 的功能,这是 Layer 类不具备的,比如 training,saving,summary,模型可视化等



那么怎么在训练模型的时候打开 eager 模型呢(就是不会去构造 graph,速度相对会慢点):



下面介绍了 Functional Models 的概念,平时用的也最多。Functional Model 可以自动生成 call、build 和 get_config 方法




大佬总结了 Functional Model 的特点。其实最核心的点就是 Functional Model 只是去构造一个 layers 之间的 DAGs,仅仅处于 configuration 配置的层面,不会涉及到任何数据的流入和流出。个人一些使用 keras 的心得,一般比较复杂的模型,可以用 Functional Model 先去构造,然后使用 model.summary 或者 keras.utils.model_plot 函数将模型打印出来,然后去 check 下自己构造的模型有没有什么 bug。




下面介绍了在构造 Functional Model 时,内部的一些工作机制:可以看到有一个内部变量-keras_history 来追踪 Model 的构建。




那么这种 Functional Model 的构造方式有什么独特的特征呢?



首先介绍的是静态输入兼容性检查:可以看到在调用 build 的前后对输入 x 分别作了一次兼容性检查。



下面是 Whole-model 保存和 model plot 的功能:




另外,还有自动 Masking 的功能:



下面,大佬深度总结了在符号输入情况下(一般是使用 Input 来定义的输入)当你调用一个 Layer 时所有的内部流程:



最后将的是动态 Layer 类,该类因为存在动态的行为,不会被加入到 graph 中去执行。对应上个投影片的 step 6,如果是 dynamic 的 layer,则会根据静态的 shape inference 去调用 compute_output_shape 函数。



整个视频听下来感觉还是蛮有深度的,大佬就是大佬啊。


视频的链接是:


https://www.youtube.com/watch?


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/83513829


2019-11-29 08:00585

评论

发布
暂无评论
发现更多内容

OpenYurt:延伸原生 Kubernetes 到边缘场景下的落地实践

阿里巴巴云原生

人工智能 容器 运维 云原生 k8s

您的《操作系统线程模型总结》请查收。

后台技术汇

28天写作 2月春节不断更

《iOS面试简历技巧解析》

ios 面试

原来这就是大厂的MySQL主从复制、读写分离及高可用方案!

MySQL 数据库 架构

开放下载!解锁 Serverless 从入门到实战大“橙”就

阿里巴巴云原生

云计算 Linux Serverless 开发者 云原生

PM必备自我管理工具整理

Geek_mktupf

项目管理 PM

百度单测生成技术如何召回线上服务的异常问题?

百度Geek说

c c++

一周信创舆情观察(1.25~1.31)

统小信uos

日记 2021年2月4日(周四)

Changing Lin

个人感悟 2月春节不断更

Spark 持久化介绍(cache/persist/checkpoint)

kwang

大数据 spark 持久化

【春节不远行,云上过大年】来华为云社区,接任务领新年红包啦···

华为云开发者联盟

华为云

🌏 超详细 DNS 协议解析

飞天小牛肉

Java 程序员 面试 计算机网络 2月春节不断更

一寸宕机一寸血,十万容器十万兵|Win10/Mac系统下基于Kubernetes(k8s)搭建Gunicorn+Flask高可用Web集群

刘悦的技术博客

flask k8s kubectl Docker Desktop gunicorn

徒手撸一个Spring Boot中的starter

田维常

springboot

16张图带你吃透Redis架构演进

Kaito

redis 架构 高性能

2021全新iOS学习方向

ios 逆向

面试加分项!零基础如何成为高级Android开发,先收藏了

欢喜学安卓

android 程序员 面试 移动开发

面试加分项!我在美团Android研发岗工作的那5年,系列篇

欢喜学安卓

android 程序员 面试 移动开发

LeetCode题解:529. 扫雷游戏,DFS,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

基于SpringBoot的微服务架构与K8S容器部署实践

Java 架构 微服务

28天总结

张老蔫

28天写作

滴滴夜莺二次开发全搞定

滴滴云

开源 监控 滴滴夜莺 夜莺监控 运维平台

零基础实现Java直播(一):集成

ZEGO即构

架构师week10总结

Geek_xq

以终为始:28天打卡输出复盘

熊斌

个人成长 写作平台 28天写作

阿里内网疯传,阿里P9分享千页实战干货:Netty、Redis、ZK高并发实战笔记

Java架构之路

Java 程序员 架构 面试 编程语言

架构师week10作业

Geek_xq

今年我读了四个开源项目的源码,来分享下心得

yes

源码 面试 后端

爆肝一周总结了一份Java学习/面试自测指南!200+道Java最常见面试题。

Java架构之路

Java 程序员 架构 面试 编程语言

将知识点一网打尽,首推Netty实战干货,实战篇+面试篇

Java架构之路

Java 程序员 架构 面试 编程语言

淘宝的商品中心和类目体系是怎么设计的

邴越

架构 阿里 模型 电商 业务

Inside Tensorflow之:tf.keras part1_文化 & 方法_Alex-zhai_InfoQ精选文章