2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

数据科学家和数据工程师之间到底有什么差别?

  • 2019-04-26
  • 本文字数:1791 字

    阅读完需:约 6 分钟

数据科学家和数据工程师之间到底有什么差别?

我们最近在Reddit上做了 AMA。人们提出的最常见问题是数据科学家和数据工程师之间到底有什么差别。因此,有关这一问题,我们会在这篇文章中深入讨论。



有很多数据专家的岗位,听起来差不多,用的工具也差不多,很难搞清楚到底每个岗位需要做什么工作。另外,规模比较小的公司可能只能招聘有限几个的数据工程师或数据科学家。这意味着在很多情况下,特定的任务和目标可能都需要一个人完成。


这使得很难区分这两种角色。因此,我们会从不同的目标、思维方式、工具和所需的背景来讨论数据工程师和数据科学家的差异。


在讨论之前,我想简单地加一段导语。事实上,许多数据科学家和数据工程师都会执行其他技术性角色的任务。数据科学家可能需要开发ETL,数据工程师可能需要开发 API 和前端。因此,我们以下指出的区别只是为了阐明技术差别在哪里。


目标

数据工程师的目标更关注于任务和开发。数据工程师构建自动化系统和建模数据结构,帮助数据得到有效处理。这代表着数据工程师的目标是创建并开发表和数据管道,以支持用于分析的仪表盘和其他的数据用户(如数据科学家、分析师和其他工程师)。他们的工作和大多数的工程师很类似,要进行大量的设计、假设、约束和开发才能完成最终的任务。每个设计和解决方案也都会有自己的约束,即使它们都可以执行最终的任务。


相对而言,数据科学家更加以问题为中心。就这点而言,他们需要寻找降低成本、增加利润、提升用户体验或业务效率的方法。这代表着他们要先提出问题,然后自己解决问题(提出问题、做出假设、得到结论)。因此他们需要提出这样的问题:什么会影响患者再次入院?如果增加一个类似的A/B测试,客户是否愿意买单?有更快的路线来运送包裹吗?跳过剩余的过程步骤。这里的目标就是找到提出的问题的答案。它可能是最终的结论,也可能会引出更多的问题。在这个过程中,数据科学家需要分析、收集支持信息、得出问题的结论。

工具

这个部分就更加让人感到困惑了。数据科学家和数据工程师都需要依赖于 Python 和 SQL。然而,两个岗位的人使用这些技术的方式是不同的。同样,这也和思维方式的不同息息相关。Python 是非常健壮的语言,它拥有强大的类库来帮助管理操作性任务和分析性任务。


数据科学家会使用 Pandas 和 Scikit Learn 这样的语言,而数据工程师会使用 Python 来管理管道。在这里AirflowLuigi这样的类库就能派上用处。


如上所说,数据科学家的查询将重点关注于问题。但是数据工程师的查询会更关注于数据的清理和转换。


可能这两类数据专家都会使用一些其他的工具,包括TableauJupyter笔记本以及其他工具等。但他们的用法会有所不同。

背景

当讨论数据工程师和数据科学家之间的差别时,另外一个常见的问题是需要什么样的背景。


数据工程师和数据科学家都需要了解数据和编程。即使涉猎不必太广。然而,除了编程之外还有一些差别,特别是对于数据科学家来说。由于数据科学家更像是研究员,如果有基于研究的背景会是加分点。


这可以是在经济学、心理学、流行病学等领域的研究背景。数据科学家可以使用 SQL、Python,具有良好的商业意识,还能将其与自身的研究背景结合起来。这些都不能用级别来衡量。事实上,数据科学家在各个领域都有所涉及。大多数雇主更希望招聘至少硕士学历、具备某些技术或数学研究背景的数据科学家。


而数据工程师就不一定需要硕士学位。数据工程师更像是一个开发人员。比起理论知识,他们需要更多的实践经验。因此,拥有硕士学位并不能说明这一点。

举个例子

比如一家医疗保健公司的主管想知道如何减少初次就诊后 30 天内再入院的患者数量。从数据的角度来看,需要完成一系列工作。


数据科学家需要了解是什么导致了这些患者再入院。这是他们需要回答的问题。根据他们得出的结论,他们会和医院合作,制定指标和政策,帮助改善患者再入院比例。


数据工程师会创建表格,帮助支持数据科学家找到问题的答案,与此同时,他们还要创建分析表,帮助追踪过去和未来的患者再入院指标。这些指标的创建会根据数据科学家得到的答案而改变。


数据科学家和数据工程师有很多的区别。他们有不同的目标、背景,但这就是两者一起合作的价值所在。事实上,数据工程师更关注于构建健壮的系统,这也能方便数据科学家轻松地查询数据,并有效地分析数据。这样的合作就能在数据方面给公司创造价值。


我们希望这篇文章能给你提供帮助!


查看英文原文What Is The Difference Between A Data Engineer And A Data Scientist


2019-04-26 07:005791

评论

发布
暂无评论
发现更多内容

包装类这颗语法糖,其实并不甜

L

Java

Neo4j 知识图谱的图数据科学-如何助力数据科学家提升数据洞察力线上研讨会于6月8号举行

GPU算力

RxJS系列02:可观察者 Observables

代码与野兽

6月月更

LLVM之父Chris Lattner:模块化设计决定AI前途,不服来辩

OneFlow

机器学习 深度学习 AI

2022年SaaS的10个有趣趋势

小炮

火遍全网的AI给老照片上色,这里有一份详细教程!

博文视点Broadview

Django基础-1

zyf

django 6月月更

静态路由,YYDS

wljslmz

网络工程师 6月月更 静态路由 路由协议

Flutter如何一键唤起

坚果

6月月更

DBNet实战:详解DBNet训练与测试(pytorch)

AI浩

人工智能 6月月更

区块链技术促进医药冷链物流更加可控和智能化

CECBC

最强分布式事务框架是怎么炼成的?

峨嵋闲散人

分布式事务 云原生 分库分表 无侵入 dbmesh

Python的教程

芯动大师

Python编程 6月月更

NFT,元宇宙的通行证

CECBC

阿里云架构师梁旭:MES on 云盒,助力客户快速构建数字工厂

阿里云弹性计算

最佳实践 数字化转型 制造业 mes 云盒

推进流程挖掘技术发展,信通院首轮流程挖掘评测预报名正式启动

王吉伟频道

RPA 信通院 流程挖掘 流程挖掘评测 行业标准

用乐高玩转Scrum,轻松拿CSM证书

ShineScrum

Scrum ScrumMaster CSM 乐高

C#入门系列(二) -- 程序结构

陈言必行

C# 6月月更

实时特征计算平台架构方法论和基于 OpenMLDB 的实践

第四范式开发者社区

机器学习 数据库 AI 特征平台 特征工程

web前端培训如何在 H5 网页中实现扫码功能

@零度

前端开发

Django API 开发:Todo 应用的 React 前端

宇宙之一粟

django React API 6月月更

Fabric.js 圆形笔刷

德育处主任

canvas 前端可视化 Fabric.js 6月月更 前端画板

纯CSS:动态渐变背景【一分钟学会】

德育处主任

CSS css3 纯CSS css特效 6月月更

写Python爬虫,服务器返回数据加密了,套路解决法~,出版社,出版社

梦想橡皮擦

6月月更

私有化IM即时通讯怎样在保障企业安全下提高效率?

BeeWorks

博睿数据荣获优炫软件产品兼容互认证书和海量数据兼容互认证书

博睿数据

智能运维 博睿数据 产品兼容 数据兼容

王者荣耀商城异地多活架构设计

踩着太阳看日出

架构训练营

聊聊 Sharding-Jdbc 的简单使用

Nick

MySQL 分库分表 中间件 ShardingJDBC 6月月更

java虚拟机启动过程解析

乌龟哥哥

6月月更

CC2530 GPIO口输出配置说明​

DS小龙哥

6月月更

发布一个轻量级的 Elasticsearch 压测工具 - Loadgen

极限实验室

elasticsearch 极限实验室 loadgen 压测工具 esrally

数据科学家和数据工程师之间到底有什么差别?_技术管理_Ben Rogojan_InfoQ精选文章