写点什么

需求预测引擎如何助力线下零售业降本增效?

  • 2020-01-12
  • 本文字数:1905 字

    阅读完需:约 6 分钟

需求预测引擎如何助力线下零售业降本增效?

在当下经济明显进入存量博弈的阶段,大到各经济体,小到企业,粗放的增长模式已不适宜持续,以往高增长的时代已经成为过去,亟需通过变革发掘新的增长点。对于竞争激烈的线下零售行业而言,则更需如此。



零售行业一般涉及的环节众多,包括商品选品、采购、库存、渠道、促销等等。如何寻找核心点打通整条链路上的各环节,提升经营效率,增加盈利呢?我们给出的答案就是围绕人的精准需求预测。


人是新零售人货场的核心,也是线下零售企业最重要的资源。通过以精准需求预测为中心,拉通供应链上各环节,产生协同效应以提升经营效率。精准的需求预测,能帮助零售企业变以往粗放被动的经营方式为精准主动的经营方式,做到比顾客更懂顾客,从而更好地服务客户及挖掘顾客价值,最终增加盈利。


线下零售行业很多环节的需求决策,例如生鲜行业每个类目每日进货量、服饰行业中的企划选款与订货量等,往往依赖人工总结经验规律,而人工经验的精准性不够会导致诸如服饰行业中,选款定量造成的畅销品断货滞消品积压问题、生鲜行业中货损严重问题等。


奇点云在上述行业中积累了较为丰富的需求预测落地经验,帮助它们建立需求拉动的敏捷供应链,提升经营效率。下部分我们将重点介绍我们的需求预测平台。

奇点云需求预测平台

数字化能力

要实现精准需求预测,数据能力(包括数据采集加工、数据治理、数据资产及数据建模等)是其关键支撑。在当下,数据已经成为各行各业重要的生产资料,其重要性再怎么强调也不为过。对线下零售行业而言,顾客数据是其最重要的虚拟资产,是需要投入资源重点经营的。奇点云结合自研的DataSimba大数据服务平台和业界领先的视觉智能引擎全面获取线上线下顾客数据,并识别汇总同一顾客数据,为下阶段顾客精准需求预测打下坚实的数据基础。

AI 算法能力

要做到精准的需求预测是极具挑战的事,影响需求的因素众多,包括商品品类信息、价格、折扣、促销、节假日、天气、季节、地域差异等等。以促销为例,促销活动会导致需求的剧烈波动,从图中可以看到,促销打折在假期及平日,周末,早晚均有不同的表现。



奇点云预测引擎是建立在数据中台之上,通过业务建模对齐业务数据评估指标,将需要预估判断的业务痛点转化为预测类的算法问题。以业务评估指标为导向,结合不同分类准确度指标(如召回、精度、F1-Score)及不同回归拟合准确度指标(如 MSE、MAPE、WAPE)等,对时序序列算法(ARIMA、Holt-Winter、fbProphet)、 机器学习算法(SVM、GBDT、lightGBM、xgboost、catboost)及深度学习算法(RNN、LSTM 等)进行 baseline 建模,再根据不同的场景、数据分布情况进行分层建模及模型融合,最后根据部署环境进行综合选择上线模型。完整的需求预测流程如下图:



在算法建模实践中,可对时序序列数据进行挖掘分析,对不同特性(如数据多寡、波动大小、销量高低、频率等)的数据可以分别建模,之后进行模型融合。针对模型融合,也可以尝试将机器学习和深度学习结合,例如在一些峰值预测场景,机器学习预测的结果偏保守,而深度学习预测的偏激进,两者的结合能更好地提升预测精度。



奇点云 AI 算法平台

案例

基于上文奇点云预测引擎的方案及架构,奇点云在生鲜、服饰及烟草等领域积累了较多的预测实战经验,下面结合一个生鲜行业具体案例介绍预测引擎如何助力线下零售业降本增效。


某社区连锁超市企业,其生鲜销售额占比超过一半。生鲜对新鲜度要求很高,这就需要保持合适的店内排面库存和在途库存。


原先它的生鲜需求量是基于人工经验来预估的,一般为了保证尽量不缺货,提升顾客的消费体验,往往会过高的估计进货量,这会导致未及时销售的蔬菜水果等只能低价处理或者清理掉,耗损率很高。


奇点云在深入了解客户业务现状及需求后,与客户一起梳理对齐关键业务指标(如正毛利率、损耗率等),在此基础上,结合会员、销售、损耗评估、缺货还原等业务数据以及节假日、天气、附近商圈居民区等数据,对无约束的需求进行了预测。以正毛利率这个指标为例,在上线测试对比中,奇点云算法模型上线的门店正毛利率从上线前的 87%提升到了上线后 92%,且上线后基本稳定在 90%以上,其它未上线门店的正毛利率则继续在 87%左右,部分门店甚至在 80%以下,且波动极大。下图是蔬菜类目下其中一个小类(销量占总体 2%左右)的试运行前两周的关键指标提升情况:



从上图可以看出,通过使用奇点云需求预测引擎,业务关键指标得到了较好的改善,客户整体盈利得到提升,这也正是奇点云通过 AI 赋能线下零售企业,让商业更智能的目的所在。

结语

客户的需求是终点,以终为始,我们以顾客需求预测为切入点来帮助企业降本增效,目前也取得了不错的开端,未来我们也会持续提升服务能力,实现让商业更智能的使命。


作者:明觉、松峦 @奇点云


2020-01-12 23:522692

评论

发布
暂无评论
发现更多内容

华为大佬的“百万级”MySQL笔记,基础+优化+架构一键搞定

Java~~~

Java MySQL 数据库 面试 架构师

初学字典-python

加里都好

安全世界观 | 常见WEB安全问题及防御策略汇总

架构精进之路

安全 8月日更

手撸二叉树之二叉树中第二小的节点

HelloWorld杰少

数据结构与算法 8月日更

模块四作业

Mr.He

架构实战营

03- 面向复杂度的架构设计

Lane

13W字!腾讯高工手写“Netty速成手册”,3天能走向实战

Java~~~

Java 面试 微服务 Netty 架构师

04-可扩展架构

Lane

毕业设计作业

薛定谔的指南针

架构实战营

单向数据流-从共享状态管理:flux/redux/vuex漫谈异步数据处理

zhoulujun

React Redux vuex vue2 状态机

当农产品拥有“身份证”区块链技术如何助力农产品溯源监管?

CECBC

Github访问量破百万!原来是美团大牛的分布式架构实战笔记上线了

Java~~~

Java 面试 分布式 微服务 架构师

腾讯技术官手撸笔记,全新演绎“Kafka部署实战”,已开源

Java~~~

Java MySQL 面试 MQ 架构师

05-高性能复杂度

Lane

新手小白花几个月勇敢裸辞转行网络安全

网络安全学海

网络安全 信息安全 转行 渗透测试 安全漏洞

毕业感想

薛定谔的指南针

架构实战营

微信朋友圈的高性能复杂度分析

Saber

架构实战营

从外包进入苏宁再跳槽阿里,分享这五年来我“走过的路”

Java 编程 程序员 面试 计算机

Android Jetpack Compose

Changing Lin

8月日更

阿里开发人员献礼“Java架构成长笔记”,深入内核,拒绝蒙圈

Java~~~

Java spring 面试 微服务 架构师

设计千万级学生管理系统的考试试卷存储方案-模块四

小牧ah

架构实战营

架构实战营模块四作业

王晓宇

架构实战营

模块四作业

秀聪

架构训练营

其实,这就是「幸存者偏差」

非著名程序员

提升认知 认知提升 个人提升 8月日更

【架构实战营】毕业设计

swordman

架构实战营

06-高可用复杂度

Lane

架构实战营-毕业设计项目

阿体

记录一次基于Qt的内存数据修改工具开发

星河寒水

qt 内存数据修改 Cheat Engine

Java架构速成笔记:七大专题,1425页考点,挑战P8岗

Java~~~

Java spring 面试 微服务 架构师

三维旋转笔记:欧拉角/四元数/旋转矩阵/轴角-记忆点整理

zhoulujun

矩阵旋转 欧拉角 三维旋转 四元数

从java注解漫谈到typescript装饰器——注解与装饰器

zhoulujun

Java 注解 装饰器 ts 元数据

需求预测引擎如何助力线下零售业降本增效?_AI&大模型_明觉_InfoQ精选文章