AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

入门指南丨上手理解 Deployment、Services 和 Ingress

  • 2021-06-26
  • 本文字数:5659 字

    阅读完需:约 19 分钟

入门指南丨上手理解Deployment、Services和Ingress

之前的文章中,我们了解了 Kubernetes 中的基本概念,其硬件结构,不同的软件组件(例如 Pod、Deployment、StatefulSet、Services、Ingress 和 Persistent Volumes),并了解了如何在服务之间与外部进行通信。


在本文中,我们将了解到:


  1. 使用 MongoDB 数据库创建 NodeJS 后端

  2. 编写 Dockerfile 来容器化我们的应用程序

  3. 创建 Kubernetes Deployment 脚本以启动 Pod

  4. 创建 Kubernetes Service 脚本以定义容器与外界之间的通信接口

  5. 部署 Ingress Controller 以请求路由

  6. 编写 Kubernetes Ingress 脚本来定义与外界的通信。



由于我们的代码可以从一个节点重定向到另一个节点(例如,一个节点没有足够的内存,所以工作将重新调度到另一个具有足够内存的节点上),因此保存在节点上的数据容易丢失 ,意味着 MongoDB 数据不稳定。在下一篇文章中,我们将讨论数据持久性问题以及如何使用 Kubernetes 持久卷安全地存储我们的持久数据。


在本文中,我们将使用 NGINX 作为 Ingress Controller 和 Azure 容器镜像仓库来存储我们的自定义 Docker 镜像。文中编写所有脚本都可以在 Stupid Simple Kubernetes git repo 中找到,如有需要可访问链接获取:http://GitHub - CzakoZoltan08/StupidSimpleKubernetes-AKS


请注意:这些脚本不限定于某个平台,因此您可以使用其他类型的云提供程序或带有 K3s 的本地集群来实践本教程。我之所以建议使用 K3s,因为它非常轻量,所有依赖项都被打包在一个小于 100MB 的单个二进制文件中。更重要的是,它是一种高可用的、经过 CNCF 认证的 Kubernetes 发行版,专门用于资源受限的环境中的生产工作负载。有关更多信息,您可以访问官方文档:

https://docs.rancher.cn/k3s/

前期准备

在开始本教程之前,请确保您已安装 Docker。同时也要安装 kubectl。


Kubectl 安装链接:

https://kubernetes.io/docs/tasks/tools/#install-kubectl-on-windows


在本教程中使用的 Kubectl 命令可以在 Kubectl  cheat sheet(https://kubernetes.io/docs/reference/kubectl/cheatsheet/)中找到。


在本教程中,我们将使用 Visual Studio Code,但这不是必要的,你也可以使用其他的编辑器。

创建可用于生产的微服务架构

将应用程序容器化


第一步,创建 NodeJS 后端的 Docker 镜像。创建镜像后,我们会将其推送到容器镜像仓库中,在该镜像仓库中可以访问它,并且可以通过 Kubernetes 服务(在本例中为 Azure Kubernetes Service)拉取。



The Docker file for NodeJS: FROM node:13.10.1 WORKDIR /usr/src/app COPY package*.json ./ RUN npm install # Bundle app source COPY . . EXPOSE 3000 CMD [ "node", "index.js" ]
复制代码


在第一行中,我们需要根据要创建后端服务的镜像进行定义。在这种情况下,我们将使用 Docker Hub 中 13.10.1 版的官方节点镜像。


在第 3 行中,我们创建一个目录来将应用程序代码保存在镜像中。这将是您的应用程序的工作目录。


该镜像已经安装了 Node.js 和 NPM,因此下一步我们需要使用 npm 命令安装您的应用程序依赖项。


请注意,要安装必需的依赖项,我们不用复制整个目录,而只需复制 package.json,这使我们可以利用缓存的 Docker 层。


有关高效 Dockerfile 的更多信息,请访问以下链接:

http://bitjudo.com/blog/2014/03/13/building-efficient-dockerfiles-node-dot-js/


在第 9 行中,我们将源代码复制到工作目录中,在第 11 行中,将其暴露在端口 3000 上(如果需要,您可以选择另一个端口,但请确保同步更改 Kubernetes Service 脚本。)


最后,在第 13 行,我们定义了运行应用程序的命令(在 Docker 容器内部)。请注意,每个 Dockerfile 中应该只有一个 CMD 指令。如果包含多个,则只有最后一个才会生效。


现在,我们已经定义了 Dockerfile,我们将使用以下 Docker 命令从该 Dockerfile 中构建镜像(使用 Visual Studio Code 的 Terminal 或在 Windows 上使用 CMD):


docker build -t node-user-service:dev .
复制代码


请注意 Docker 命令末尾的小圆点,这意味着我们正在从当前目录构建镜像,因此请确保您位于 Dockerfile 所在的同一文件夹中(在本例中,是 repo 的根文件夹)。


要在本地运行镜像,我们可以使用以下命令:



docker run -p 3000:3000 node-user-service:dev
复制代码


若要将此镜像推送到我们的 Azure 容器镜像仓库,我们必须使用以下格式标记它<container-registry-login-service>/<image-name>:<tag>:,在本例中如下所示:


docker tag node-user-service:dev stupidsimplekubernetescontainerregistry.azurecr.io/node-user-service:dev
复制代码


最后一步是使用以下 Docker 命令将其推送到我们的容器镜像仓库中:


docker push stupidsimplekubernetescontainerregistry.azurecr.io/node-user-service:dev
复制代码


使用部署脚本创建 Pod


NodeJs 后端


接下来,定义 Kubernetes Deployment 脚本,该脚本将自动为我们管理 Pod。



apiVersion: apps/v1 kind: Deployment metadata: name: node-user-service-deployment spec: selector: matchLabels: app: node-user-service-pod replicas: 3 template: metadata: labels: app: node-user-service-pod spec: containers: - name: node-user-service-container image: stupidsimplekubernetescontainerregistry.azurecr.io/node-user-service:dev resources: limits: memory: "256Mi" cpu: "500m" imagePullPolicy: Always ports: - containerPort: 3000
复制代码


Kubernetes API 可以查询和操作 Kubernetes 集群中对象的状态(例如 Pod、命名空间、ConfigMap 等)。如第一行中所指定,这个 API 的当前稳定版本为 1。


在每个 Kubernetes .yml 脚本中,我们必须使用 kind 关键字定义 Kubernetes 资源类型(Pods、Deployments、Service 等)。因此,你可以看到,我们在第 2 行中定义了我们想使用 Deployment 资源。


Kubernetes 允许您向资源中添加一些元数据。这样一来,您就可以更轻松地识别、过滤和参考资源。


在第 5 行中,我们定义了该资源的规范。在第 8 行中,我们指定此 Deployment 应仅应用于标签为 app:node-user-service-pod 的资源中,在第 9 行中可以看出我们想要创建同一 Pod 的 3 个副本。


Template(从第 10 行开始)定义了 Pod。在这里,我们将标签 app:node-user-service-pod 添加到每个 Pod。这样,Deployment 将识别它们。在第 16 和 17 行中,我们定义了应在 pod 内部运行哪种 Docker 容器。如您在第 17 行中看到的那样,我们将使用 Azure 容器镜像仓库中的 Docker 镜像,该镜像是在上一节中构建并推送的。


我们还可以为 Pod 定义资源限制,避免 Pod 资源不足(当其中一个 Pod 使用所有资源而其他 Pod 无法使用它们时)。此外,当您为 Pod 中的容器指定资源请求时,调度程序将使用此信息来决定将 Pod 放置在哪个节点上。当您为容器指定资源限制时,kubelet 会强制执行这些限制,从而不允许运行中的容器使用超出您设置的资源限制。kubelet 还至少保留该系统资源的“请求”量。请注意,如果您没有足够的硬件资源(例如 CPU 或内存),则永远无法调度 pod。


最后一步是定义用于通信的端口。在本例中,我们使用端口 3000。此端口号应与 Dockerfile 中暴露的端口号相同。

MongoDB

MongoDB 数据库的 Deployment 脚本非常相似。唯一的区别是我们必须指定卷挂载(数据会被保存到节点上的文件夹中)。



apiVersion: apps/v1 kind: Deployment metadata: name: user-db-deployment spec: selector: matchLabels: app: user-db-app replicas: 1 template: metadata: labels: app: user-db-app spec: containers: - name: mongo image: mongo:3.6.4 command: - mongod - "--bind_ip_all" - "--directoryperdb" ports: - containerPort: 27017 volumeMounts: - name: data mountPath: /data/db resources: limits: memory: "256Mi" cpu: "500m" volumes: - name: data persistentVolumeClaim: claimName: static-persistence-volume-claim-mongo
复制代码


在本例中,我们直接从 DockerHub 使用了官方 MongoDB 镜像(第 17 行)。在第 24 行中定义了卷安装。在讨论 Kubernetes 持久卷时,我们将在下一篇文章中解释最后四行。


创建用于网络访问的服务


现在我们已经启动了 Pod,并开始定义容器之间以及与外部世界的通信。为此,我们需要定义一个服务。Service 与 Deployment 之间的关系是一对一的,因此对于每个 Deployment,我们都应该有一个 Service。Deployment 还可以管理 Pod 的生命周期,并且负责监控它们,而 Service 负责启用对一组 Pod 的网络访问。



apiVersion: v1 kind: Service metadata: name: node-user-service spec: type: ClusterIP selector: app: node-user-service-pod ports: - port: 3000 targetPort: 3000
复制代码


这个.yml 脚本的重要部分是 selector,它定义了如何识别要从此 Service 引用的 Pod(由 Deployment 创建)。在第 8 行中我们可以看到的,Selector 为 app:node-user-service-pod,因为先前定义的 Deployment 中的 Pod 被标记为这样。另一个重要的事情是定义容器端口和服务端口之间的映射。在这种情况下,传入请求将使用第 10 行中定义的 3000 端口,并将它们路由到第 11 行中定义的端口。


MongoDB pod 的 Kubernetes Service 脚本非常相似。我们只需要更新 Selector 和端口。



apiVersion: v1 kind: Service metadata: name: user-db-service spec: clusterIP: None selector: app: user-db-app ports: - port: 27017 targetPort: 27017
复制代码

配置外部流量

为了与外界通信,我们需要定义一个 Ingress Controller 并使用 Ingress Kubernetes 资源指定路由规则。


要配置 NGINX ingress controller,我们将使用可以以下链接中的脚本:

https://github.com/CzakoZoltan08/StupidSimpleKubernetes-AKS/blob/master/manifest/ingress-controller/nginx-ingress-controller-deployment.yml


这是一个通用脚本,无需修改即可应用(详细解释 NGINX Ingress Controller 不在本文讨论范围之内)。


下一步是定义“负载均衡器”,该负载均衡器将用于使用公共 IP 地址路由外部流量(云提供商提供负载均衡器)。



kind: Service apiVersion: v1 metadata: name: ingress-nginx namespace: ingress-nginx labels: app.kubernetes.io/name: ingress-nginx app.kubernetes.io/part-of: ingress-nginx spec: externalTrafficPolicy: Local type: LoadBalancer selector: app.kubernetes.io/name: ingress-nginx app.kubernetes.io/part-of: ingress-nginx ports: - name: http port: 80 targetPort: http - name: https port: 443 targetPort: https
复制代码


现在我们已经启动并运行了 Ingress controller 和负载均衡器,于是我们可以定义 Ingress Kubernetes 资源来指定路由规则。



apiVersion: extensions/v1beta1 kind: Ingress metadata: name: node-user-service-ingress annotations: kubernetes.io/ingress.class: "nginx" nginx.ingress.kubernetes.io/rewrite-target: /$2 spec: rules: - host: stupid-simple-kubernetes.eastus2.cloudapp.azure.com http: paths: - backend: serviceName: node-user-service servicePort: 3000 path: /user-api(/|$)(.*) # - backend: # serviceName: nestjs-i-consultant-service # servicePort: 3001 # path: /i-consultant-api(/|$)(.*)
复制代码


在第 6 行中,我们定义了 Ingress Controller 类型(这是 Kubernetes 的预定义值;Kubernetes 当前支持和维护 GCE 和 nginx controller)。


在第 7 行中,我们定义了重写目标规则,在第 10 行中,我们定义了主机名。


对于应该从外部访问的每个服务,我们应该在路径列表中添加一个条目(从第 13 行开始)。在此示例中,我们仅为 NodeJS 用户服务后端添加了一个条目,可通过端口 3000 对其进行访问。/ user-api 唯一标识我们的服务,因此任何以 stupid-simple-kubernetes.eastus2.cloudapp azure.com/user-api 开头的请求将被路由到此 NodeJS 后端。如果要添加其他服务,则必须更新此脚本(请参见注释掉的代码)。


应用.yml 脚本


要应用这些脚本,我们将使用 kubectl。应用文件的 kubectl 命令如下:


kubectl apply -f
复制代码


在本例中,如果你在 StupidSimpleKubernetes repo 的根文件夹中,您需要执行以下命令:



kubectl apply -f .\manifest\kubernetes\deployment.yml kubectl apply -f .\manifest\kubernetes\service.yml kubectl apply -f .\manifest\kubernetes\ingress.yml kubectl apply -f .\manifest\ingress-controller\nginx-ingress-controller-deployment.yml kubectl apply -f .\manifest\ingress-controller\ngnix-load-balancer-setup.yml
复制代码


应用这些脚本后,一切准备就绪,进而我们可以从外部调用后端(如使用 Postman)。

总结

在本教程中,我们学习了如何在 Kubernetes 中创建各种资源,例如 Pod、Deployment、Services、Ingress 和 Ingress Controller。我们使用 MongoDB 数据库创建了一个 NodeJS 后端,并使用 3 个 pod 的副本容器化并部署了 NodeJS 和 MongoDB 容器。


在下一篇文章中,我们将了解持久保存数据的问题,并将介绍 Kubernetes 中的持久卷。


作者简介

Czako Zoltan,一位经验丰富的全栈开发人员,在前端,后端,DevOps,物联网和人工智能等多个领域都拥有丰富的经验。


本文转载自:RancherLabs(ID:RancherLabs)

原文链接:入门指南丨上手理解Deployment、Services和Ingress

2021-06-26 15:046592

评论

发布
暂无评论
发现更多内容

软件测试 | SQLite管理工具

测吧(北京)科技有限公司

测试

共享电动车制造的厂家有哪些?要注意什么

共享电单车厂家

共享电动车厂家 共享电单车生产 共享电动车制造 本铯电动车厂家

一文看懂THD布局要求

华秋PCB

PCB 布局 PCB设计 布线 波峰焊

一周狂赚50万,GPT-4帮你在线“脱单”,AI女友按分钟收费,男友高达数量1000+

加入高科技仿生人

人工智能 AI 低代码 ChatGPT GPT-4

深入理解 synchronized 的锁升级

做梦都在改BUG

Java synchronized 锁升级

2023升级版Java面试八股文核心笔记,7天内拿下那该死的offer

开心学Java

Java 面试 java面试 Java八股文

软件测试 | 配置MySQL

测吧(北京)科技有限公司

测试

低代码开发平台 重塑数字医疗生产力

力软低代码开发平台

Amazon EKS 上有状态服务启用存储加密

亚马逊云科技 (Amazon Web Services)

亚马逊云科技

MatrixGate 5.0 性能再升级,加载速度提升三倍!

YMatrix 超融合数据库

数据库 开源数据库 超融合数据库

软件测试 | 安装PyMySQL

测吧(北京)科技有限公司

行业实践专栏上线|互娱领域专家解读 Flink 企业应用实践

Apache Flink

大数据 flink 实时计算

一图看懂一体化数据安全平台 uDSP

原点安全

数据治理 数据安全 数据安全法 信息泄露 个人信息安全

Difference between from DR4019 and DR4029 /industrial wifi5 router/support openwrt.

Cindy-wallys

IPQ4019 ipq4029

20 分钟搭建互动教室,实现多人实时互动白板协作丨RTE 开发实战课 • 第三期

声网

飞桨EasyDL月刊:4月功能全新升级,模型训练步骤缩短63%

飞桨PaddlePaddle

飞桨 EasyDL

碉堡了!阿里架构师手打的Java10W字面经,已经助我拿了6个offer

做梦都在改BUG

Java java面试 Java八股文 Java面试题 Java面试八股文

分库分表的 21 条法则,hold 住!

小小怪下士

Java MySQL 程序员 分库分表

创建各种类型的3D模型:Rhino 7中文激活版

真大的脸盆

Mac Mac 软件 三维建模 建模软件 3d建模

openEuler 成功适配 LeapFive InFive Poros 开发板

openEuler

Linux 操作系统 openEuler 开发板 risc-v

MySQL的varchar存储原理:InnoDB记录存储结构

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 5 月 PK 榜

YMatrix 5.0 故障自动转移功能新实现,运维更方便!

YMatrix 超融合数据库

数据库 时序数据库 超融合数据库 YMatrix

我以为我对Mysql很熟,直到遇到了阿里这份笔记

做梦都在改BUG

Java MySQL 数据库

华为云云原生视窗:一文回顾Q1精彩瞬间

华为云开发者联盟

云原生 后端 华为云 华为云开发者联盟 企业号 5 月 PK 榜

时序数据库中的乱序问题-写不动的老程序员带你解读

Greptime 格睿科技

云原生 时序数据库 国产时序数据库 乱序数据

华为数据中心产业论坛 | 打造低碳、绿色数据中心,构建新型数字产业能源基础设施

Geek_2d6073

明道云开放日上海站开启报名

明道云

如何简单快捷的使用上ChatGPT?

Ricky

人工智能 openai ChatGPT

山东移动:全业务域核心系统升级,实现大幅降本增效

OceanBase 数据库

数据库 oceanbase

声网自研编码器 a264 & a265:更优画质更低能耗,进一步适配实时互动场景需求

声网

NLP 入门导论

小付聊测试

AI 入门 nlp

入门指南丨上手理解Deployment、Services和Ingress_语言 & 开发_Rancher_InfoQ精选文章