写点什么

微软提出新 AI 框架 MWSS,假新闻识别率优于最先进的基准

  • 2020-04-17
  • 本文字数:1655 字

    阅读完需:约 5 分钟

微软提出新AI框架MWSS,假新闻识别率优于最先进的基准

不久前,微软和亚利桑那州立大学的研究人员在预印本平台 arxiv.org 上发表了一项研究论文,他们提出了一种人工智能框架: Multiple sources of Weak Social Supervision(MWSS),利用参与度和社交媒体信号来检测假新闻。他们声称,经过在真实数据集上训练和测试,该模型在假新闻早期检测方面的表现优于一些最先进的基准。


如果该系统的正确率真的如作者声称的那样,并投入生产,它将有助于阻断虚假和误导性信息的传播,这些信息涉及美国总统候选人和其他有争议的话题。布鲁金斯学会(Brookings Institute)在 2018 年进行的一项调查发现,57% 的美国成年人在 2018 年大选期间曾遇到假新闻,19% 的人认为假新闻影响了他们的投票决定。


该论文的共同作者解释说,学术文献中的许多假新闻分类器依赖的信号需要很长时间才能聚合,这使得它们不适用于假新闻的早期检测。此外,有些分类器仅仅依赖于信号,而这些信号容易受到有偏见或不真实的用户反馈的影响。


相比之下,他们的新系统从多个来源进行监督,包括用户和他们各自的社交活动。具体来说,它利用少量手动标签的数据和大量弱标签的数据(即带有大量噪声的数据),用于元学习人工智能框架中的联合训练。


一个名为 Label Weighting Network(LWN)的模块,对调节假新闻分类学习过程的弱标签的权重进行建模,将研究人员所指的内容作为一个实例——例如(新闻片段)以及标签作为“输入”。它为“表示对”输出一个代表重要性权重的值,该值决定了该实例在训练假新闻分类器时的影响。为了在不同的弱信号之间共享信息,共享特征提取器与 LWN 一起工作,来学习共同的表示方法,并使用函数将特征映射到不同的弱标签源。



微软人工智能框架与各种基准模型的性能对比图


微软研究人员利用开源的 FakeNewsNet 数据集对他们的系统进行了基准测试,该数据集包含新闻内容(包括正文等元属性),并带有来自事实核查网站 GossipCop 和 PolitiFact 的专家注释的标签,同时还包含了社交背景信息,如有关该新闻文章的推文。他们使用 13 个来源的语料库对系统进行增强,其中包括英国主流新闻媒体,如英国广播公司(BBC)和天空新闻(Sky News),以及俄罗斯新闻媒体的英文版,如 RT 和 Sputnik,内容大多与政治有关。


为了生成弱标签,研究人员测量了分享新闻的用户的情感评分,然后确定这些得分之间的差异,这样,情绪差异很大的文章就会被注释为假新闻。他们还生成了一组具有已知公众偏见的人群的数据,并根据用户的兴趣与这些人群的匹配程度来计算得分,其背后的理论是,有偏见的用户分享的新闻更有可能是假新闻。最后,他们根据社交媒体上的元信息对用户进行聚类,以此来衡量用户的可信度。这样一来,那些形成大型聚类的用户(这可能表明是僵尸网络或恶意活动)的用户就被认为可信度较低。


在测试中,研究人员表示,性能最好的模型结合了 Facebook 和 RoBERTA 自然语言处理算法,并针对干净和弱数据的组合进行了训练,在 GossipCop 和 PolitiFact 中检测出假新闻的正确率分别为 80% 和 82% 。


该团队计划在未来的工作中探索其他技术,如获得高质量的弱标签的标签校正方法。他们还希望对这个框架进行扩展,以考虑来自社交网络的其他类型的弱监督信号,利用参与的时间戳。


当然,这些研究人员并非唯一试图利用人工智能来阻断假新闻传播的人。


在最近的一项研究中,麻省理工学院计算机科学与人工智能实验室开发了一种人工智能系统,可以识别误导性的新闻文章。去年年底,Jigsaw 发布了 Assembler,这是一款为媒体机构提供的人工智能假新闻识别工具套件。AdVerif.ai 是一个软件即服务的平台,去年推出了 Beta 测试版,它分析文章中的错误信息、成人内容、恶意软件和其他有问题的内容,并交叉引用一个定期更新的数据库,其中包含数千条假新闻和合法新闻。就 Facebook 而言,它已经试验了部署人工智能工具来“识别账户和假新闻”。

作者简介:

Kyle Wiggers,技术记者,现居美国纽约市,为 VentureBeat 撰写有关人工智能的文章。


原文链接:


https://venturebeat.com/2020/04/10/ai-training-helps-remote-controlled-buggy-negotiate-rugged-terrain/


2020-04-17 07:001901
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 559.8 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

AI提问实现学习弯道超车!如何使用AI加速学习?

可信AI进展

人工智能

运维实战来了!如何构建适用于YashanDB的Prometheus Exporter

YashanDB

yashandb 崖山数据库 崖山DB

按图搜索的精准营销:基于拍立淘API返回值的用户画像

技术冰糖葫芦

API Explorer API 接口 API 测试 API】

宠物供应链服务平台如何实现云化架构升级改造?

华为云开发者联盟

数据库 存储 企业号 8 月 PK 榜 企业号2024年8月PK榜

LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发

汀丶人工智能

人工智能 ollama localAI openllm

望繁信科技邀您共赴2024数博会,开启数智经济新篇章

望繁信科技

大数据 数字化转型 流程挖掘 大数据博览会 流程智能

助力人效提升!火山引擎数智平台助推头部新能源车企业务增长

字节跳动数据平台

大数据 云服务 BI 数据可视化 物化视图

亚信安慧AntDB数据库与实在智能完成兼容性互认证,携手助力企业数据安全

亚信AntDB数据库

AntDB

全球首发!昆仑万维重磅推出AI流媒体音乐平台Melodio

新消费日报

2024-08-14:用go语言,给定两个长度分别为n和m的整数数组nums和changeIndices,下标从1开始。初始时,nums 中所有下标均未标记。 从第1秒到第m秒,每秒可以选择以下四种操

福大大架构师每日一题

福大大架构师每日一题

GreatSQL 并行Load Data加快数据导入

GreatSQL

DeFi 协议应提供多类封装型比特币, wBTC 不应作为唯一选择

TechubNews

etl 读写 elastic 同步数据

weigeonlyyou

hadoop elastic HBase ETL Go 语言

4家手机云电脑玩游戏:ToDesk云电脑、易腾云、达龙云、青椒云实测对比

小喵子

云电脑 云游戏 ToDesk ToDesk云电脑 云电竞

聊一聊 Netty 数据搬运工 ByteBuf 体系的设计与实现

bin的技术小屋

Netty java netty netty内存管理

人工智能 | 打造领域专属的大语言模型

测试人

软件测试

微软提出新AI框架MWSS,假新闻识别率优于最先进的基准_AI&大模型_Kyle Wiggers_InfoQ精选文章