10 月 23 - 25 日,QCon 上海站即将召开,现在购票,享9折优惠 了解详情
写点什么

微软提出新 AI 框架 MWSS,假新闻识别率优于最先进的基准

  • 2020-04-17
  • 本文字数:1655 字

    阅读完需:约 5 分钟

微软提出新AI框架MWSS,假新闻识别率优于最先进的基准

不久前,微软和亚利桑那州立大学的研究人员在预印本平台 arxiv.org 上发表了一项研究论文,他们提出了一种人工智能框架: Multiple sources of Weak Social Supervision(MWSS),利用参与度和社交媒体信号来检测假新闻。他们声称,经过在真实数据集上训练和测试,该模型在假新闻早期检测方面的表现优于一些最先进的基准。


如果该系统的正确率真的如作者声称的那样,并投入生产,它将有助于阻断虚假和误导性信息的传播,这些信息涉及美国总统候选人和其他有争议的话题。布鲁金斯学会(Brookings Institute)在 2018 年进行的一项调查发现,57% 的美国成年人在 2018 年大选期间曾遇到假新闻,19% 的人认为假新闻影响了他们的投票决定。


该论文的共同作者解释说,学术文献中的许多假新闻分类器依赖的信号需要很长时间才能聚合,这使得它们不适用于假新闻的早期检测。此外,有些分类器仅仅依赖于信号,而这些信号容易受到有偏见或不真实的用户反馈的影响。


相比之下,他们的新系统从多个来源进行监督,包括用户和他们各自的社交活动。具体来说,它利用少量手动标签的数据和大量弱标签的数据(即带有大量噪声的数据),用于元学习人工智能框架中的联合训练。


一个名为 Label Weighting Network(LWN)的模块,对调节假新闻分类学习过程的弱标签的权重进行建模,将研究人员所指的内容作为一个实例——例如(新闻片段)以及标签作为“输入”。它为“表示对”输出一个代表重要性权重的值,该值决定了该实例在训练假新闻分类器时的影响。为了在不同的弱信号之间共享信息,共享特征提取器与 LWN 一起工作,来学习共同的表示方法,并使用函数将特征映射到不同的弱标签源。



微软人工智能框架与各种基准模型的性能对比图


微软研究人员利用开源的 FakeNewsNet 数据集对他们的系统进行了基准测试,该数据集包含新闻内容(包括正文等元属性),并带有来自事实核查网站 GossipCop 和 PolitiFact 的专家注释的标签,同时还包含了社交背景信息,如有关该新闻文章的推文。他们使用 13 个来源的语料库对系统进行增强,其中包括英国主流新闻媒体,如英国广播公司(BBC)和天空新闻(Sky News),以及俄罗斯新闻媒体的英文版,如 RT 和 Sputnik,内容大多与政治有关。


为了生成弱标签,研究人员测量了分享新闻的用户的情感评分,然后确定这些得分之间的差异,这样,情绪差异很大的文章就会被注释为假新闻。他们还生成了一组具有已知公众偏见的人群的数据,并根据用户的兴趣与这些人群的匹配程度来计算得分,其背后的理论是,有偏见的用户分享的新闻更有可能是假新闻。最后,他们根据社交媒体上的元信息对用户进行聚类,以此来衡量用户的可信度。这样一来,那些形成大型聚类的用户(这可能表明是僵尸网络或恶意活动)的用户就被认为可信度较低。


在测试中,研究人员表示,性能最好的模型结合了 Facebook 和 RoBERTA 自然语言处理算法,并针对干净和弱数据的组合进行了训练,在 GossipCop 和 PolitiFact 中检测出假新闻的正确率分别为 80% 和 82% 。


该团队计划在未来的工作中探索其他技术,如获得高质量的弱标签的标签校正方法。他们还希望对这个框架进行扩展,以考虑来自社交网络的其他类型的弱监督信号,利用参与的时间戳。


当然,这些研究人员并非唯一试图利用人工智能来阻断假新闻传播的人。


在最近的一项研究中,麻省理工学院计算机科学与人工智能实验室开发了一种人工智能系统,可以识别误导性的新闻文章。去年年底,Jigsaw 发布了 Assembler,这是一款为媒体机构提供的人工智能假新闻识别工具套件。AdVerif.ai 是一个软件即服务的平台,去年推出了 Beta 测试版,它分析文章中的错误信息、成人内容、恶意软件和其他有问题的内容,并交叉引用一个定期更新的数据库,其中包含数千条假新闻和合法新闻。就 Facebook 而言,它已经试验了部署人工智能工具来“识别账户和假新闻”。

作者简介:

Kyle Wiggers,技术记者,现居美国纽约市,为 VentureBeat 撰写有关人工智能的文章。


原文链接:


https://venturebeat.com/2020/04/10/ai-training-helps-remote-controlled-buggy-negotiate-rugged-terrain/


2020-04-17 07:002181
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 584.1 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

【web 开发基础】php 开发基础快速入门 (3)-PHP程序符号标记和程序注释的使用及空白符详解

迷彩

php开源 9月月更 web开发基础

APISIX是怎么跑起来的

geange

lua api 网关 APISIX 网关 APISIX的源码解析

Python之如何判断闰年

芯动大师

9月月更 判断闰年 format格式化字符串

物联网平台常见问题与答案汇总

阿里云AIoT

数据 物联网平台 物联网 协议 mqtt

透视星环科技上市:基础工具、技术融合、场景应用三维击穿

易观分析

数据

万字详文,剖析企业数字化的降“本”增效

阿里技术

数字化 降本增效

也谈“我们开发者根本不想做运维!”

愚夫一得

DevOps 语言 & 开发 文化 & 方法 技术中台 运维‘

Python应用之九九乘法表

芯动大师

9月月更 九九乘法表的实现 变量和循坏的应用

Python应用之求100以内的奇数和

芯动大师

9月月更 变量和循坏的应用 递归求和

React 新提案 useEvent 已死?不,它将涅盘重生。

清秋

React useEvent RFC 提案

Spring Security 介绍中的 servlet 和 reactive

HoneyMoose

【编程实践】利用Python看看那些QQ好友都在QQ空间发了啥

迷彩

词云图 selenium Python爬虫 9月月更 结巴分词

数据结构第五章图,期末不挂科指南

梦想橡皮擦

9月月更

Java中只有8大数据类型吗?看了本文,你会收获颇丰

wljslmz

Java 数据类型 9月月更

VolareFinance 测试网教程(更新)

鳄鱼视界

九月书单

图灵教育

科普 计算机 新书

云渲染比自己的电脑好用太多,这4个因素要考虑

Finovy Cloud

人工智能 云计算 渲染 云渲染

Java中synchronized关键字到底怎么用,这个例子一定要看!

wljslmz

Java synchronized 9月月更

数据结构第七章排序,期末不挂科指南

梦想橡皮擦

数据结构 9月月更

【web 开发基础】php 开发基础快速入门 (4)-PHP常量详解

迷彩

php 常量 9月月更 魔术常量

九月书单

图灵社区

科普 计算机 新书

2022年中国HR SaaS行业洞察

易观分析

HR SaaS

OptaPlanner快速入门-helloworld

积木编程

【kafka异常】使用Spring-kafka遇到的坑

石臻臻的杂货铺

Kafk 9月月更

VUE 数据分页

HoneyMoose

【云原生 | 从零开始学Kubernetes】十三、k8s的容器探测以及启动探测

泡泡

云计算 容器 云原生 k8s 9月月更

联通研究院霍龙社博士深度解析“AI项目到底适不适合开源”

OpenI启智社区

人工智能 OpenI启智社区 AI开源 CubeAI智立方

2022-09-29:在第 1 天,有一个人发现了一个秘密。 给你一个整数 delay ,表示每个人会在发现秘密后的 delay 天之后, 每天 给一个新的人 分享 秘密。 同时给你一个整数 forg

福大大架构师每日一题

算法 rust 福大大

还不了解堆栈和队列吗?数据结构最基础、最重要的概念必须掌握!

wljslmz

数据结构 堆栈 队列 9月月更

leetcode 226. Invert Binary Tree 翻转二叉树(简单)

okokabcd

LeetCode 数据结构与算法

数据结构第六章查找,期末不挂科指南

梦想橡皮擦

数据结构 9月月更

微软提出新AI框架MWSS,假新闻识别率优于最先进的基准_AI&大模型_Kyle Wiggers_InfoQ精选文章