AICon 深圳站聚焦 Agent 技术、应用与生态,大咖分享实战干货 了解详情
写点什么

百度开源其人工智能系统:Warp-CTC

  • 2016-01-19
  • 本文字数:2134 字

    阅读完需:约 7 分钟

近日,百度位于硅谷的人工智能实验室(SVAIL)开源了其核心的人工智能系统:Warp-CTC,该系统是一种在 CPU 和 GPU 上快速的 CTC 的并行实现。这项举动举动对于促进机器学习、人工智能领域的技术研究与发展与有重要意义。Warp-CTC 可用于解决比如语音识别这样的,将输入序列映射到输出序列的监督问题。基于 Apache 协议,WARP-CTC 的 C 语言库和可选 Torch 绑定都已托管到 GitHub:

https://github.com/baidu-research/warp-ctc

简介

许多现实世界的序列学习任务都要求从嘈杂的、不分段的输入数据中进行标签序列的预测。例如语音识别中,声音信号就被转化成语句或单词。递归神经网络(RNN)对于这样的任务来说是有力的序列训练方法,然而由于 RNN 需要预分段的训练数据,以及需要后处理才能将输出数据转化成标签序列,因此 RNN 的性能受到了限制。Warp-CTC 使用了 Connectionist Temporal Classification 的方法,该方法可以直接训练 RNN 来标记未分段序列,从而规避上述问题。Connectionist Temporal Classification 是一种损失函数,用于执行针对序列数据的监督学习,不需要输入数据和标签之间进行对应。举例来说,CTC 可以用于训练语音识别中端对端系统,而这项技术在百度硅谷人工智能实验室中早已开始使用了。

上图显示了 CTC 计算出输出序列“THE CAT”的可能性概率,考虑到由于标签可能延伸若干个输入数据的时间步长而导致标签被复制(用图像底部的光谱来表示),上图结果是所有输入序列可能映射到“THE CAT”上的比对总和。计算这些概率的总和由于涉及到组合学,显然是十分耗费时间和运算成本的,但是 CTC 利用动态编程极大地降低了运算成本。因为 CTC 是可微分的方程,它可用于深度神经网络的标准 SGD 训练。

百度实验室聚焦于扩展递归神经网络,CTC 损失就是一个十分重要的组成部分。为了使整个系统有效运行,百度将整个 CTC 算法并行化处理。该项目包含了百度的高性能 CPU 以及 CTC 损失的 CUDA 版本,并绑定了 Torch。代码库中提供了简单了 C 语言界面,以便于更好地融合深度学习框架。

这一实例通过执行更快地并行调度,极大地改进了性能,改善了训练的可扩展性。对于聚焦于 GPU 的训练管道来说,将数据本地化放置于 GPU 内存中可以用互联带宽增加数据的并行性。

性能

相对于其它公共开放的实例来说,Warp-CTC 要高效得多。该项目在编写时也是尽可能做到数值稳定。该算法对于数值十分敏感,甚至在内存消耗的多得多的单精度浮点运算当中,对于 Log 运算,其数值也是相当稳定。除了机器指令,此外还需要对于多重超越函数的评价。正因为如此,这些 CTC 实例的仅当使用相同方式计算时才能相互比较。

百度将 Warp-CTC 与运行在 Theano 上的 CTC 实例:Eesen,以及仅适用于 Cython CPU 的实例 Stanford-CTC 进行过比较。百度参照了 Theano 在 32 位浮点数字环境下进行 Log 运算,目的是与其它百度相比较的实例进行匹配。他们还将 Stanford-CTC 进行了改良,以便于在 Log 空间下进行运算,但是 Stanford-CTC 也不支持大于 1 的 minibatch。所以百度需要一个训练管道中更加庞大的内存布局,他们假设随着 minibatch 尺寸的增加,内存消耗是线性递增的。

百度将与英文和中文端对端模型(end-to-end model)相关的两个问题尺寸的结果分别展示了出来,在这里 T 代表了输入 CTC 的时间步长的数目,L 代表了每个 example 的长度,A 代表了字母的大小。

在 GPU 上,每 64 个 example 的 minibatch 的表现都在比 Eesen 快 7 倍和快 155 倍、比 Theano 实例快 46 倍和快 68 倍的范围之间波动。

GPU 表现

基于单 NVIDIA Titan X GPU

CPU 表现

基于两个 Intel E5-2660 v3 处理器的双卡插槽机器,Warp-CTC 用了 40 个线程去充分利用 CPU 资源,Eesen 没有提供 CPU 实例,Theano 实例没有进行跨多线程并行计算,Stanford-CTC 并未提供跨线程并行计算的机制。

接口

接口在 _include/ctc.h_ 里面,它支持 CPU 或 GPU 执行。如果运行在 CPU 上,你可以指定 OpenMP 并行;或者如果运行在 GPU 上,你可以指定 CUDA 流。百度针对该项目进行了设置,确保代码库不会在内部进行内存分配,目的在于避免由内存分配导致的同步和开销(synchronizations and overheads)。

编译

目前,Warp-CTC 已在 Ubuntu 14.04 和 OSX 10.10 上进行过测试,Windows 目前暂不支持。

首先获取以下代码:

复制代码
git clone https://github.com/baidu-research/warp-ctc.git
cd warp-ctc

创建一个目录

复制代码
mkdir build
cd build

如果你安装了非标准的 CUDA,则

export CUDA_BIN_PATH=/path_to_cuda以便于 CMake 可以检测到 CUDA,并且确保 Torch 也被检测到,确保 _th_ 在 _$PATH_ 里面。

运行 cmake 并创建

复制代码
cmake ../
make

C 代码库和 Torch 共享库会随着测试的可执行文件一同被创建。如果 CUDA 被检测到,那么 _test_gpu_ 就会被创建;_test_cpu_ 无论何种情况都会被创建。

测试

为了运行该项测试,对于 OSX 系统来说,百度确保了 CUDA 库在 _LD_LIBRARY_PATH (DYLD_LIBRARY_PATH_。Torch 测试必须从 _torch_binding/tests/_ 库中运行。

Torch 安装

luarocks make torch_binding/rocks/warp-ctc-scm-1.rockspec我们也可以不克隆存储库来进行安装。

luarocks install http://raw.githubusercontent.com/baidu-research/warp-ctc/master/torch_binding/rocks/warp-ctc-scm-1.rockspec

2016-01-19 22:2911398

评论

发布
暂无评论
发现更多内容

如何将模型原点设置到模型的中心

3D建模设计

模型原点设置 原点归零 原点坐标

极光笔记 | 发送功能使用技巧分享

极光GPTBots-极光推送

营销 消息推送 邮件 邮件通知 海外市场

十几种排序算法的可视化效果,快来看看!

编程的平行世界

算法 可视化

经人行批准!华为旗下支付机构更名,进入负一屏“发现”页享华为支付

最新动态

AGI 黑客松收官,Zilliz 向量数据库助力34支参赛队伍角逐大模型时代的Killer App

Zilliz

黑客松 Zilliz AGI 向量数据库

Scrum敏捷项目管理关键

顿顿顿

敏捷开发 敏捷项目管理 scrum敏捷工具

一键生成!盘点那些好用的3D建模AI生成工具!

Finovy Cloud

AI 3d建模

向量召回:深入评估离线体系,探索优质召回方法

汀丶人工智能

人工智能 自然语言处理 语义搜索系统 文本匹配 向量召回

MatrixOne Logtail 设计解析

MatrixOrigin

分布式数据库 云原生数据库 MatrixOrigin MatrixOne HTAP数据库

国外服务器入门:为何越来越多的企业选择海外托管?

一只扑棱蛾子

国外服务器

低代码加速软件开发进程

树上有只程序猿

低代码开发 JNPF

九月 NFT 行业解读:熊市情绪仍占上风

Footprint Analytics

区块链 NFT 链游

前端开发工具有哪些?17款前端工程师必备工具推荐!

彭宏豪95

效率 前端开发 开发工具 前端工程师 办公软件

如何优化模型渲染性能

3D建模设计

性能提升 渲染优化

平均检出率“

矩视智能

深度学习 机器视觉

百度何俊杰:扎根百度技术“黑土地”,造大模型“生态雨林”

极客天地

Python 爬虫实战之爬拼多多商品并做数据分析

Noah

1024程序员节(源聚一堂北京站)节目有奖征集!

开放原子开源基金会

低代码:让软件开发不再遥不可及

互联网工科生

低代码 应用开发 JNPF

如何选择适合自己的音视频产品

X2Rtc

开源 音视频 RTC

百度开源其人工智能系统:Warp-CTC_百度_董志南_InfoQ精选文章