写点什么

百度开源其人工智能系统:Warp-CTC

  • 2016-01-19
  • 本文字数:2134 字

    阅读完需:约 7 分钟

近日,百度位于硅谷的人工智能实验室(SVAIL)开源了其核心的人工智能系统:Warp-CTC,该系统是一种在 CPU 和 GPU 上快速的 CTC 的并行实现。这项举动举动对于促进机器学习、人工智能领域的技术研究与发展与有重要意义。Warp-CTC 可用于解决比如语音识别这样的,将输入序列映射到输出序列的监督问题。基于 Apache 协议,WARP-CTC 的 C 语言库和可选 Torch 绑定都已托管到 GitHub:

https://github.com/baidu-research/warp-ctc

简介

许多现实世界的序列学习任务都要求从嘈杂的、不分段的输入数据中进行标签序列的预测。例如语音识别中,声音信号就被转化成语句或单词。递归神经网络(RNN)对于这样的任务来说是有力的序列训练方法,然而由于 RNN 需要预分段的训练数据,以及需要后处理才能将输出数据转化成标签序列,因此 RNN 的性能受到了限制。Warp-CTC 使用了 Connectionist Temporal Classification 的方法,该方法可以直接训练 RNN 来标记未分段序列,从而规避上述问题。Connectionist Temporal Classification 是一种损失函数,用于执行针对序列数据的监督学习,不需要输入数据和标签之间进行对应。举例来说,CTC 可以用于训练语音识别中端对端系统,而这项技术在百度硅谷人工智能实验室中早已开始使用了。

上图显示了 CTC 计算出输出序列“THE CAT”的可能性概率,考虑到由于标签可能延伸若干个输入数据的时间步长而导致标签被复制(用图像底部的光谱来表示),上图结果是所有输入序列可能映射到“THE CAT”上的比对总和。计算这些概率的总和由于涉及到组合学,显然是十分耗费时间和运算成本的,但是 CTC 利用动态编程极大地降低了运算成本。因为 CTC 是可微分的方程,它可用于深度神经网络的标准 SGD 训练。

百度实验室聚焦于扩展递归神经网络,CTC 损失就是一个十分重要的组成部分。为了使整个系统有效运行,百度将整个 CTC 算法并行化处理。该项目包含了百度的高性能 CPU 以及 CTC 损失的 CUDA 版本,并绑定了 Torch。代码库中提供了简单了 C 语言界面,以便于更好地融合深度学习框架。

这一实例通过执行更快地并行调度,极大地改进了性能,改善了训练的可扩展性。对于聚焦于 GPU 的训练管道来说,将数据本地化放置于 GPU 内存中可以用互联带宽增加数据的并行性。

性能

相对于其它公共开放的实例来说,Warp-CTC 要高效得多。该项目在编写时也是尽可能做到数值稳定。该算法对于数值十分敏感,甚至在内存消耗的多得多的单精度浮点运算当中,对于 Log 运算,其数值也是相当稳定。除了机器指令,此外还需要对于多重超越函数的评价。正因为如此,这些 CTC 实例的仅当使用相同方式计算时才能相互比较。

百度将 Warp-CTC 与运行在 Theano 上的 CTC 实例:Eesen,以及仅适用于 Cython CPU 的实例 Stanford-CTC 进行过比较。百度参照了 Theano 在 32 位浮点数字环境下进行 Log 运算,目的是与其它百度相比较的实例进行匹配。他们还将 Stanford-CTC 进行了改良,以便于在 Log 空间下进行运算,但是 Stanford-CTC 也不支持大于 1 的 minibatch。所以百度需要一个训练管道中更加庞大的内存布局,他们假设随着 minibatch 尺寸的增加,内存消耗是线性递增的。

百度将与英文和中文端对端模型(end-to-end model)相关的两个问题尺寸的结果分别展示了出来,在这里 T 代表了输入 CTC 的时间步长的数目,L 代表了每个 example 的长度,A 代表了字母的大小。

在 GPU 上,每 64 个 example 的 minibatch 的表现都在比 Eesen 快 7 倍和快 155 倍、比 Theano 实例快 46 倍和快 68 倍的范围之间波动。

GPU 表现

基于单 NVIDIA Titan X GPU

CPU 表现

基于两个 Intel E5-2660 v3 处理器的双卡插槽机器,Warp-CTC 用了 40 个线程去充分利用 CPU 资源,Eesen 没有提供 CPU 实例,Theano 实例没有进行跨多线程并行计算,Stanford-CTC 并未提供跨线程并行计算的机制。

接口

接口在 _include/ctc.h_ 里面,它支持 CPU 或 GPU 执行。如果运行在 CPU 上,你可以指定 OpenMP 并行;或者如果运行在 GPU 上,你可以指定 CUDA 流。百度针对该项目进行了设置,确保代码库不会在内部进行内存分配,目的在于避免由内存分配导致的同步和开销(synchronizations and overheads)。

编译

目前,Warp-CTC 已在 Ubuntu 14.04 和 OSX 10.10 上进行过测试,Windows 目前暂不支持。

首先获取以下代码:

复制代码
git clone https://github.com/baidu-research/warp-ctc.git
cd warp-ctc

创建一个目录

复制代码
mkdir build
cd build

如果你安装了非标准的 CUDA,则

export CUDA_BIN_PATH=/path_to_cuda以便于 CMake 可以检测到 CUDA,并且确保 Torch 也被检测到,确保 _th_ 在 _$PATH_ 里面。

运行 cmake 并创建

复制代码
cmake ../
make

C 代码库和 Torch 共享库会随着测试的可执行文件一同被创建。如果 CUDA 被检测到,那么 _test_gpu_ 就会被创建;_test_cpu_ 无论何种情况都会被创建。

测试

为了运行该项测试,对于 OSX 系统来说,百度确保了 CUDA 库在 _LD_LIBRARY_PATH (DYLD_LIBRARY_PATH_。Torch 测试必须从 _torch_binding/tests/_ 库中运行。

Torch 安装

luarocks make torch_binding/rocks/warp-ctc-scm-1.rockspec我们也可以不克隆存储库来进行安装。

luarocks install http://raw.githubusercontent.com/baidu-research/warp-ctc/master/torch_binding/rocks/warp-ctc-scm-1.rockspec

2016-01-19 22:2911483

评论

发布
暂无评论
发现更多内容

军事领域关系抽取:UIE Slim最新升级版含数据标注、serving部署、模型蒸馏等教学,助力工业应用场景快速落地

汀丶人工智能

人工智能 自然语言处理 知识图谱 关系抽取 命名实体识别

Git分支教程:详解分支创建、合并、删除等操作

小万哥

git Linux 程序员 C/C++ 后端开发

2023-05-31:给定一个整数数组 A,你可以从某一起始索引出发,跳跃一定次数 在你跳跃的过程中,第 1、3、5... 次跳跃称为奇数跳跃 而第 2、4、6... 次跳跃称为偶数跳跃 你可以按以下

福大大架构师每日一题

golang 算法 rust 福大大

硬核Prompt赏析:AI老师长什么样?

无人之路

AI Prompt

窄带高清技术之百万级并发下的演唱会直播细节修复

阿里云CloudImagine

云计算 窄带高清 时代少年团 理想之途

Python潮流周刊#4:Python 2023 语言峰会

Python猫

Python

C语言编程—字符串

芯动大师

6 月 优质更文活动

信通院公布2023低代码·无代码最新评估结果,阿里云两案例入选!

云布道师

阿里云

ChatGPT与软件架构(1) - 快速原型

俞凡

人工智能 架构 ChatGPT

免费好用的苹果Mac软件|Parallels Client远程控制

Rose

Mac远程控制软件 Parallels Client 下载

【亲测可用】parallels desktop虚拟机激活密钥

Rose

Mac虚拟机 Parallels Desktop 18破解 PD虚拟机激活秘钥 PD18下载 Parallels 激活码

玖章算术NineData荣获信通院“生成式人工智能技术和应用优秀案例”奖

NineData

人工智能 信通院 SQL开发 NineData 生成式AI

PS图像无损放大插件 Blow Up 3最新激活版

真大的脸盆

Mac Mac 软件 图片无损放大 无损放大插件

深度学习进阶篇[8]:对抗神经网络GAN基本概念简介、纳什均衡、生成器判别器、解码编码器详解以及GAN应用场景

汀丶人工智能

人工智能 深度学习 GAN 博弈论 生成对抗网络

深度学习进阶篇[7]:Transformer模型长输入序列、广义注意力、FAVOR+快速注意力、蛋白质序列建模实操。

汀丶人工智能

人工智能 自然语言处理 深度学习 Transformer 注意力机制

为什么双重效验锁要加volatile?

javacn.site

Photoshop 2023(ps测试版)新功能:生成填充功能介绍

Rose

Photoshop 2023下载 PS测试版下载 PS2023新功能介绍

2023 CCF-百度松果基金正式启动申报!大语言模型、AIGC等热点课题首次公布

飞桨PaddlePaddle

Word 2021 LTSC mac v16.73-中文正式版-永久许可证

Rose

Word 2021 许可证 Word 2021破解版 Word下载

Django笔记三十九之settings配置介绍

Hunter熊

Python django session database setting

Idea 社区版创建 Web 项目

Andy

如何使用Pixelmator Pro照片编辑器一键改善照片?

Rose

Pixelmator Pro破解 Pixelmator Pro中文 Pixelmator Pro下载 Mac照片编辑器

kafka消费者那些事儿

JAVA旭阳

kafka

办公必备|PDF Reader Pro mac永久激活版 pdf编辑阅读器推荐

Rose

pdf编辑器 mac软件下载 PDF Reader Pro中文 PDF Reader Pro破解

Vue:打造属于自己的高质量自定义组件库

xfgg

Vue 组件

Generative AI 新世界 | 大语言模型(LLMs)在 Amazon SageMaker 上的动手实践

亚马逊云科技 (Amazon Web Services)

机器学习

Alfred 5 for Mac(苹果效率提升工具) v5.1.1(2138)中文汉化版

Rose

mac效率工具 Alfred 教程 Alfred 5下载 Alfred 5破解版 Alfred 中文

标签系列:标签的两大行业应用实践

小鲸数据

CDP 精细化运营 标签体系 DMP 精准营销

文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

福大大架构师每日一题

福大大 ChatGPT 文心一言 讯飞星火

Code Whisperer测评体验

長歌

百度开源其人工智能系统:Warp-CTC_百度_董志南_InfoQ精选文章