写点什么

关于 Android 中工作者线程的思考

  • 2015-12-16
  • 本文字数:4349 字

    阅读完需:约 14 分钟

本文系 2015 北京 GDG Devfest 分享内容整理。

在 Android 中,我们或多或少使用了工作者线程,比如 Thread,AsyncTask,HandlerThread,甚至是自己创建的线程池,使用工作者线程我们可以将耗时的操作从主线程中移走。然而在 Android 系统中为什么存在工作者线程呢,常用的工作者线程有哪些不易察觉的问题呢,关于工作者线程有哪些优化的方面呢,本文将一一解答这些问题。

工作者线程的存在原因

  • 因为 Android 的 UI 单线程模型,所有的 UI 相关的操作都需要在主线程 (UI 线程) 执行
  • Android 中各大组件的生命周期回调都是位于主线程中,使得主线程的职责更重
  • 如果不使用工作者线程为主线程分担耗时的任务,会造成应用卡顿,严重时可能出现 ANR(Application Not Responding), 即程序未响应。

因而,在 Android 中使用工作者线程显得势在必行,如一开始提到那样,在 Android 中工作者线程有很多,接下来我们将围绕 AsyncTask,HandlerThread 等深入研究。

AsyncTask

AsyncTask 是 Android 框架提供给开发者的一个辅助类,使用该类我们可以轻松的处理异步线程与主线程的交互,由于其便捷性,在 Android 工程中,AsyncTask 被广泛使用。然而 AsyncTask 并非一个完美的方案,使用它往往会存在一些问题。接下来将逐一列举 AsyncTask 不容易被开发者察觉的问题。

AsyncTask 与内存泄露

内存泄露是 Android 开发中常见的问题,只要开发者稍有不慎就有可能导致程序产生内存泄露,严重时甚至可能导致 OOM(OutOfMemory,即内存溢出错误)。AsyncTask 也不例外,也有可能造成内存泄露。

以一个简单的场景为例:
在 Activity 中,通常我们这样使用 AsyncTask

复制代码
//In Activity
new AsyncTask<String, Void, Void>() {
@Override
protected Void doInBackground(String... params) {
//some code
return null;
}
}.execute("hello world");

上述代码使用的匿名内存类创建 AsyncTask 实例,然而在 Java 中,非静态内存类会隐式持有外部类的实例引用,上面例子 AsyncTask 创建于 Activity 中,因而会隐式持有 Activity 的实例引用。

而在 AsyncTask 内部实现中,mFuture 同样使用匿名内部类创建对象,而 mFuture 会作为执行任务加入到任务执行器中。

复制代码
private final WorkerRunnable<Params, Result> mWorker;
public AsyncTask() {
mFuture = new FutureTask<Result>(mWorker) {
@Override
protected void done() {
//some code
}
};
}

而 mFuture 加入任务执行器,实际上是放入了一个静态成员变量 SERIAL_EXECUTOR 指向的对象 SerialExecutor 的一个 ArrayDeque 类型的集合中。

复制代码
public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
//fake code
r.run();
}
});
}
}

当任务处于排队状态,则 Activity 实例引用被静态常量 SERIAL_EXECUTOR 间接持有。

在通常情况下,当设备发生屏幕旋转事件,当前的 Activity 被销毁,新的 Activity 被创建,以此完成对布局的重新加载。

而本例中,当屏幕旋转时,处于排队的 AsyncTask 由于其对 Activity 实例的引用关系,导致这个 Activity 不能被销毁,其对应的内存不能被 GC 回收,因而就出现了内存泄露问题。

关于如何避免内存泄露,我们可以使用静态内部类 + 弱引用的形式解决。

cancel 的问题

AsyncTask 作为任务,是支持调用者取消任务的,即允许我们使用 AsyncTask.canncel() 方法取消提交的任务。然而其实 cancel 并非真正的起作用。

首先,我们看一下 cancel 方法:

复制代码
public final boolean cancel(boolean mayInterruptIfRunning) {
mCancelled.set(true);
return mFuture.cancel(mayInterruptIfRunning);
}

cancel 方法接受一个 boolean 类型的参数,名称为mayInterruptIfRunning,意思是是否可以打断正在执行的任务。

当我们调用 cancel(false),不打断正在执行的任务,对应的结果是

  • 处于 doInBackground 中的任务不受影响,继续执行
  • 任务结束时不会去调用onPostExecute方法,而是执行onCancelled方法

当我们调用 cancel(true),表示打断正在执行的任务,会出现如下情况:

  • 如果 doInBackground 方法处于阻塞状态,如调用 Thread.sleep,wait 等方法,则会抛出 InterruptedException。
  • 对于某些情况下,有可能无法打断正在执行的任务

如下,就是一个 cancel 方法无法打断正在执行的任务的例子

复制代码
AsyncTask<String,Void,Void> task = new AsyncTask<String, Void, Void>() {
@Override
protected Void doInBackground(String... params) {
boolean loop = true;
while(loop) {
Log.i(LOGTAG, "doInBackground after interrupting the loop");
}
return null;
}
}
task.execute("hello world");
try {
Thread.sleep(2000);// 确保 AsyncTask 任务执行
task.cancel(true);
} catch (InterruptedException e) {
e.printStackTrace();
}

上面的例子,如果想要使 cancel 正常工作需要在循环中,需要在循环条件里面同时检测isCancelled()才可以。

串行带来的问题

Android 团队关于 AsyncTask 执行策略进行了多次修改,修改大致如下:

  • 自最初引入到 Donut(1.6) 之前,任务串行执行
  • 从 Donut 到 GINGERBREAD_MR1(2.3.4), 任务被修改成了并行执行
  • 从 HONEYCOMB(3.0)至今,任务恢复至串行,但可以设置executeOnExecutor()实现并行执行。

然而 AsyncTask 的串行实际执行起来是这样的逻辑

  • 由串行执行器控制任务的初始分发
  • 并行执行器一次执行单个任务,并启动下一个

在 AsyncTask 中,并发执行器实际为 ThreadPoolExecutor 的实例,其 CORE_POOL_SIZE 为当前设备 CPU 数量 +1,MAXIMUM_POOL_SIZE 值为 CPU 数量的 2 倍 + 1。

以一个四核手机为例,当我们持续调用 AsyncTask 任务过程中

  • 在 AsyncTask 线程数量小于 CORE_POOL_SIZE(5 个) 时,会启动新的线程处理任务,不重用之前空闲的线程
  • 当数量超过 CORE_POOL_SIZE(5 个),才开始重用之前的线程处理任务

但是由于 AsyncTask 属于默认线性执行任务,导致并发执行器总是处于某一个线程工作的状态,因而造成了 ThreadPool 中其他线程的浪费。同时由于 AsyncTask 中并不存在 allowCoreThreadTimeOut(boolean) 的调用,所以 ThreadPool 中的核心线程即使处于空闲状态也不会销毁掉。

Executors

Executors 是 Java API 中一个快速创建线程池的工具类,然而在它里面也是存在问题的。

以 Executors 中获取一个固定大小的线程池方法为例

复制代码
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,0L,
TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

在上面代码实现中,CORE_POOL_SIZE 和 MAXIMUM_POOL_SIZE 都是同样的值,如果把 nThreads 当成核心线程数,则无法保证最大并发,而如果当做最大并发线程数,则会造成线程的浪费。因而 Executors 这样的 API 导致了我们无法在最大并发数和线程节省上做到平衡。

为了达到最大并发数和线程节省的平衡,建议自行创建 ThreadPoolExecutor,根据业务和设备信息确定 CORE_POOL_SIZE 和 MAXIMUM_POOL_SIZE 的合理值。

HandlerThread

HandlerThread 是 Android 中提供特殊的线程类,使用这个类我们可以轻松创建一个带有 Looper 的线程,同时利用 Looper 我们可以结合 Handler 实现任务的控制与调度。以 Handler 的 post 方法为例,我们可以封装一个轻量级的任务处理器

复制代码
private Handler mHandler;
private LightTaskManager() {
HandlerThread workerThread = new HandlerThread("LightTaskThread");
workerThread.start();
mHandler = new Handler(workerThread.getLooper());
}
public void post(Runnable run) {
mHandler.post(run);
}
public void postAtFrontOfQueue(Runnable runnable) {
mHandler.postAtFrontOfQueue(runnable);
}
public void postDelayed(Runnable runnable, long delay) {
mHandler.postDelayed(runnable, delay);
}
public void postAtTime(Runnable runnable, long time) {
mHandler.postAtTime(runnable, time);
}

在本例中,我们可以按照如下规则提交任务

  • post 提交优先级一般的任务
  • postAtFrontOfQueue 将优先级较高的任务加入到队列前端
  • postAtTime 指定时间提交任务
  • postDelayed 延后提交优先级较低的任务

上面的轻量级任务处理器利用 HandlerThread 的单一线程 + 任务队列的形式,可以处理类似本地 IO(文件或数据库读取)的轻量级任务。在具体的处理场景下,可以参考如下做法:

  • 对于本地 IO 读取,并显示到界面,建议使用 postAtFrontOfQueue
  • 对于本地 IO 写入,不需要通知界面,建议使用 postDelayed
  • 一般操作,可以使用 post

线程优先级调整

在 Android 应用中,将耗时任务放入异步线程是一个不错的选择,那么为异步线程调整应有的优先级则是一件锦上添花的事情。众所周知,线程的并行通过 CPU 的时间片切换实现,对线程优先级调整,最主要的策略就是降低异步线程的优先级,从而使得主线程获得更多的 CPU 资源。

Android 中的线程优先级和 Linux 系统进程优先级有些类似,其值都是从 -20 至 19。其中 Android 中,开发者可以控制的优先级有:

  • THREAD_PRIORITY_DEFAULT,默认的线程优先级,值为 0
  • THREAD_PRIORITY_LOWEST,最低的线程级别,值为 19
  • THREAD_PRIORITY_BACKGROUND 后台线程建议设置这个优先级,值为 10
  • THREAD_PRIORITY_MORE_FAVORABLE 相对THREAD_PRIORITY_DEFAULT稍微优先,值为 -1
  • THREAD_PRIORITY_LESS_FAVORABLE 相对THREAD_PRIORITY_DEFAULT稍微落后一些,值为 1

为线程设置优先级也比较简单,通用的做法是在 run 方法体的开始部分加入下列代码

android.os.Process.setThreadPriority(priority);通常设置优先级的规则如下:

  • 一般的工作者线程,设置成THREAD_PRIORITY_BACKGROUND
  • 对于优先级很低的线程,可以设置THREAD_PRIORITY_LOWEST
  • 其他特殊需求,视业务应用具体的优先级

总结

在 Android 中工作者线程如此普遍,然而潜在的问题也不可避免,建议在开发者使用工作者线程时,从工作者线程的数量和优先级等方面进行审视,做到较为合理的使用。


感谢徐川对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2015-12-16 17:297188

评论

发布
暂无评论
发现更多内容

无需业务改造,一套数据库满足 OLTP 和 OLAP,GaiaDB 发布并行查询能力

百度Geek说

企业号2024年7月PK榜

有什么好用的固定资产管理软件?2024年排行榜最新出炉!

软件大师兄

固定资产管理系统 固定资产管理 固定资产管理二维码

人工智能|思维链

测吧(北京)科技有限公司

测试

数业智能心大陆:把AI心理咨询师装进口袋

心大陆多智能体

人工智能 智能体 AI大模型 心理健康 数字心理

向日葵 or Todesk?刚需垂直场景如何选择合适的远控付费方案

编程猫

凤凰项目(Phoenix Project)精要 - 随笔 - 下

Anliven

读书笔记 团队管理 DevOps 运维 团队效能

Databend 开源周报第 154 期

Databend

万字长文年中盘点,2024上半年大模型技术突破与应用展望

可信AI进展

人工智能

解析微店商品详情的 API 接口获取之道

Noah

PHP 调用 1688 详情 API 接口的实战攻略

api开发

软件测试 / 人工智能丨思维链

测试人

软件测试

MobPush Android端 SDK API

MobTech袤博科技

开发者 产品设计 产品动态

MobPush iOS端 扩展业务功能设置

MobTech袤博科技

Java 开发者 产品动态

精英工程师的选择:顶尖9款工程项目管理工具

爱吃小舅的鱼

项目管理 项目管理工具 工程项目管理

MobPush 标签别名 API

MobTech袤博科技

Java 开发者 产品动态

2024快应用开发者大会亮点揭秘,携手AI共塑未来十年服务分发新格局

科技热闻

第60期 | GPTSecurity周报

云起无垠

为什么说知识图谱 + RAG > 传统 RAG?

可信AI进展

人工智能

PHP 与淘宝详情 API 的融合:构建智能电商应用

api开发

MIAOYUN原厂认证证书上线,快来GET您的新证书!

MIAOYUN

云原生 智能运维AIOps 培训与认证 MIAOYUN 工程师成长

AI 应用实战营 - 作业 七 - AI生成视频

德拉古蒂洛维奇

【等保测评】24年无锡等保测评机构名单

行云管家

等保 等级保护 等保测评 无锡

一分钟让你知道等保合规堡垒机定义以及重要性

行云管家

等保 堡垒机 等级保护 等保合规

乘云数字受邀Zabbix MeetUp济南站,分享《DataBuff在打造可观测性数据底座上的探索》

乘云数字DataBuff

可观测性 zabbix Meetup

计算机视觉与面部识别:技术、应用与未来发展

天津汇柏科技有限公司

计算机视觉

IT服务管理成熟度评估

Anliven

项目管理 运维 效能度量 IT服务管理 团队效能

关于Android中工作者线程的思考_Android/iOS_段建华_InfoQ精选文章