现场实操破解开发瓶颈,「2023 百度云智大会·智算大会 开发者沙龙」不容错过! 了解详情
写点什么

用“一袋子词”进行情感分析

  • 2016-02-03
  • 本文字数:3350 字

    阅读完需:约 11 分钟

很久以来,主流 NLP (Natural Language Processing)就在这样的一袋子词里面做文章,有时候也确实做出了蛮漂亮的文章,都是用的基于统计的机器学习。什么是“一袋子词”呢?

NLP 的对象是自然语言文本(speech 不论),具体说来,根据任务的不同,这个对象是语料库(corpus)、文章(document)或帖子(post),都是有上下文(discourse)的 text,作为 NLP 系统的输入。对于输入的 text,首先是断词(tokenization)。断词以后,有两条路可走,一条路是一句一句去做句法结构分析(parsing),另一条路就是这一袋子词的分析,又叫基于关键词(keywords)的分析。所以,一袋子词是相对于语言结构(linguistic structure)而言的。换句话说,一袋子词就是要绕过句法,把输入文字打散成词,然后通过统计模型,来完成指定的语言处理任务。(科学网,立委科普)

一袋子词(bag-of-words)模型在主题分类上做得很好,但是一旦涉及到情感分类,就不是很精确了。Bo Pang 和 Lillian Lee 在 2002 年的电影评论情感分析研究中,精确度才达到 69%。要是用 3 种常用的文本分析分类器(Naive Bayes、Maximum Entropy、Support Vector Machines),精确度能达到大约 80%(取决于采用的 feature)。

那么为什么还要用“一袋子词”模型呢?原因就在于可以帮助我们更好地理解文本内容,并且帮助我们为 3 个常用分类器选择 feature。Naive Bayes 模型也是基于“一袋子词”模型的,所以“一袋子词”模型可以作为一个中间步骤。

数据收集

Ahmet Taspinar 是一名数据科学家、软件工程师,同时也在攻读应用物理学。针对“一袋子词”的情感分析,他进行了一个实验。在他的实验中,他用著名的 Python 爬虫工具—BeautifulSoup,从亚马逊网站上爬取了大量的图书评论。在总共的 213335 本图书评论中随机选了 8 本书的评论。

然后,他针对这 8 本书的不同打分,做了一个柱状分布图。从图中可以看到,分布变化趋势还是挺明显的,平均分以上的书,几乎没有 1 分的,远差于平均水平的书,不同等级的评分具有独特的分布趋势。

我们能看到,“Gone Girl”的评分分布趋势很漂亮,所以比较适合我们的数据训练;而“Unbroken”、“The Martian”这两本书,1 分的评分量都不太够,所以用于训练“差评”不是很合适。

建立“一袋子词”模型

下一步,Ahmet Taspinar 将评论语料数据分成“训练数据集”和“测试数据集”。“Gone Girl”大概有 40000 个评论,所以他用最多一半的评论来训练,用剩下一半评论来测试模型。为了考虑到训练数据集大小对模型精确度产生的效应,他还会将训练数据集的大小从 1000 条评论到 20000 条评论之间来回变换。

“一袋子词”模型是 NLP 中最简单的语言模型之一。它通过追踪每个词的出现次数来建立文本的一元语法模型(Unigram Model),然后它可以用作文本分类器的 feature。在“一袋子词”模型中,你只能考虑单个的一些词,然后给每个词赋予一个特定的主观性得分。这个主观性得分可在情感词汇中查到。如果总分比较低,那么该文本就是“差评”,反之亦然。“一袋子词”很容易做,但是不够精确,因为它没有考虑词的顺序或者语法。简单的改进就是把一元语法模型和二元语法模型(Bigram Model)结合起来用,即不要在诸如“not”、“no”、“very”、“just”等词语后面断句。这样很好实现,但却有意想不到的效果。如果不把一元模型和二元模型结合,仅仅用一元模型,“This book is not good”就会判为“好评”,“This book is very good”和“This book is good”的评分就会一样。

建立“一袋子词”的伪代码如下所示:

复制代码
list_BOW = []
For each review in the training set:
Strip the newline charachter “\n” at the end of each review.
Place a space before and after each of the following characters: .,()[]:;” (This prevents sentences like “I like this book.It is engaging” being interpreted as [“I”, “like”, “this”, “book.It”, “is”, “engaging”].)
Tokenize the text by splitting it on spaces.
Remove tokens which consist of only a space, empty string or punctuation marks.
Append the tokens to list_BOW.
list_BOW now contains all words occuring in the training set.
Place list_BOW in a Python Counter element. This counter now contains all occuring words together with their frequencies. Its entries can be sorted with the most_common() method.

制作情感词汇

现实问题是,我们怎么通过判断每个词的情感 / 主观得分来判断整个文本的情感 / 主观得分呢?的确,我们可以使用一些开源的词汇库,但是我们不知道这些词汇是在何种状态下、出于何种目的建立起来的。而且,绝大多数的词汇都被分成两类:要么好评、要么差评。

如果用训练数据集的一些统计指标来判断每一个词的主观得分,可能会好一些。为了这样做,Ahmet Taspinar 判断了”一袋子词“中每一个词出现的类概率。这可以通过使用 Panda Dataframe 作为 datacontainer(但只能用 dictionary 或者其他的数据格式来做)。代码如下:

复制代码
from sets import Set
import pandas as pd
BOW_df = pd.DataFrame(0, columns=scores, index='')
words_set = Set()
for review in training_set:
score = review['score']
text = review['review_text']
splitted_text = split_text(text)
for word in splitted_text:
if word not in words_set:
words_set.add(word)
BOW_df.loc[word] = [0,0,0,0,0]
BOW_df.ix[word][score] += 1
else:
BOW_df.ix[word][score] += 1

这里 split_text 是用于将一句话拆分成单个词的列表的方法:

复制代码
def expand_around_chars(text, characters):
for char in characters:
text = text.replace(char, " "+char+" ")
return text
def split_text(text):
text = strip_quotations_newline(text)
text = expand_around_chars(text, '".,()[]{}:;')
splitted_text = text.split(" ")
cleaned_text = [x for x in splitted_text if len(x)>1]
text_lowercase = [x.lower() for x in cleaned_text]
return text_lowercase

输出结果为一个包含了每种类型每个单词出现次数的数据列表:

我们可以看到,还是有一些词只出现了一次。这些词在它们出现的这个类里,类概率是 100%。这种分布根本就不能真实反映实际的类分布状况。因此,对于定义一些“出现的临界值”还是不够好;出现次数少于这个值的单词不被列入考虑范围内。

通过用“一行中每个单词出现次数”除以“一行中所有词出现次数之和”,Ahmet Taspinar 得到了一个数据表,这个表包含了每种类型每个单词的相对出现次数。例如:每个单词的类概率图。做完这些后,class 1 中概率最高的单词被认为是“差评”的,class 5 中概率最高的单词被认为是“好评”的。

由此,我们可以从训练数据集中构建情感词汇,并用于衡量测试数据集中的评论主观性。随着训练数据集的大小不同,情感词汇也变得越来越精确了。

判断评论的主观性

通过将“4 star”和“5 star”标记为“好评”,“1 star”和“2 star”标记为“差评”,“3 star”标记为“中立”,并结合下图所示的“好评词”和“差评词”,我们可以使用“一袋子词”模型来判断一个评论究竟是“好评”还是“差评”了,并且精确度能达到 60% 以上。

展望

“一袋子词”通过绕过句法,把输入文字打散成词,然后使用统计模型完成基于关键词的分析。它可以帮助我们更好地理解文本内容,包括使用常用分类器来进行情感分析时,也是必不可少的关键步骤。那么展望未来,使用“一袋子词”来进行情感分析还有以下问题需要解决:

  • 使用从 A 书的评论中建立的好评和差评词语,来判断 B 书评论的主观倾向性,其精确度有多高呢?
  • 有太多词语本身没有正面或负面的意思,但却容易让人觉得有正面或负面的主观倾向,这些词只有结合上下文才能更好地理解。如果我们考虑二元语法模型(Bigram Model),甚至三元语法模型(Trigram Model),“一袋子词”的精确程度又能提高多少呢?
  • 从所有书籍的所有评论中提取情感词汇全集,有没有可能实现?
  • 使用“一袋子词”来作为三种常用分类器(Naive Bayes、Maximum Entropy 和 Support Vector Machines)的 feature。
2016-02-03 20:003560

评论

发布
暂无评论
发现更多内容

制作红木家具3d模型

3D建模设计

3D模型 材质贴图 纹理贴图 材质纹理

走软件开发的捷径——低代码之路

树上有只程序猿

软件开发 低代码 JNPF

用友承建!居然之家人力资源数智化项目成功上线!

用友BIP

云计算与低代码:加速应用开发与创新的双核引擎

快乐非自愿限量之名

云计算 云原生 低代码

云桌面系统如何使用?云桌面的优势有哪些?

青椒云云电脑

云桌面 云桌面解决方案 云桌面系统

低代码开发平台有什么优势?

代码生成器研究

如何降低代码的复杂度?

代码生成器研究

供应商企业在线询价招投标管理系统

金陵老街

债务管理一体化领先实践,全面提升融资管理效率,有效防控风险

用友BIP

如何为 3D 模型制作纹理的最佳方法

3D建模设计

材质 纹理 贴图 3D模型纹理贴图

微信小程序 WXSS 是如何编译的?

FN0

小程序 小程序容器

还记得当初自己为什么选择计算机?

代码生成器研究

手把手教你使用 RisingWave 流数据库

吴英骏

分布式 rust 流处理 物化视图 数据库设计流程

云桌面是什么?好用的云桌面推荐?

青椒云云电脑

云桌面 云桌面解决方案

青椒云云桌面—低配电脑秒变高性能设计神器

青椒云云电脑

桌面云 云桌面 云桌面系统

String 拼接字符串效率低?是真的吗?

红袖添香

Java 字节码 字符串拼接

Java多线程系列4:线程协同

BigBang!

Java多线程

中企全球化:王文京与新加坡建筑企业集永成共谋数智化新发展

用友BIP

少写代码,用更便捷的方式开发程序

代码生成器研究

精选21款免费项目管理系统,哪款更适合你?

PingCode

项目管理 项目经理 项目管理软件

如何降低代码的复杂度?

代码生成器研究

为什么说编程是新时代必学的技能?

代码生成器研究

IPQ5018 IPQ6010 IPQ8072 Support Wallystech Latest Opensource Code Repository

wallyslilly

IPQ6010 IPQ8072 ipq5018

「X」Embedding in NLP|Token 和 N-Gram、Bag-of-Words 模型释义

Zilliz

nlp NLP 大模型 Milvus AIGC

软件测试/人工智能|Python算术运算符:入门指南

霍格沃兹测试开发学社

软件测试/人工智能|Python Pip 常用命令大全

霍格沃兹测试开发学社

每日一题:LeetCode-322. 零钱兑换

半亩房顶

面试 算法 LeetCode 动态规划 贪心算法

低代码开发平台有什么优势?

代码生成器研究

王文京与厦航董事长、党委书记赵东交流座谈,共商助力智慧民航建设

用友BIP

软件测试/人工智能|Python运算符:初学者指南

霍格沃兹测试开发学社

前端又出新轮子Nue.js,但还是低代码更香!

伤感汤姆布利柏

前端 低代码 前端框架 极简主义 nue

  • 扫码添加小助手
    领取最新资料包
用“一袋子词”进行情感分析_语言 & 开发_董志南_InfoQ精选文章