写点什么

Kubecon 2017 大会 Google 高级产品经理 David Aronchick 访谈:机器学习和 Kubernetes

  • 2018-01-31
  • 本文字数:2172 字

    阅读完需:约 7 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

在德克萨斯州奥斯汀市举办的 Kubecon 大会已于近日闭幕,会议吸引了超过 4000 名工程师,Kubernetes 成为了大会最热门的主题。由于工作负载的本质和训练算法中典型繁重计算的需求,机器学习话题和它与 Kubernetes 的协同作用在许多会议上都讨论过。

Kubeflow 平台使得 Kubernetes 上的机器学习简单,便携和可扩展,它主要通过提供 manifests 来创建:

  • JupyterHub,以实现和管理 Jupyter 笔记本;
  • 同时适配 CPU 和 GPU 的 Tensorflow 训练控制器;
  • Tensorflow 服务容器。

InfoQ 有幸邀请到 David Aronchick 就相关问题进行了访谈,David Aronchick 不仅是 Google 的产品经理,也是 Kubeflow 的主导者。他在 Kubecon 2017 大会上着重展示了 Kubernetes 和机器学习的协同作用。

InfoQ:机器学习在 Kubecon 大会上获得了很大关注,有什么特别的原因吗?

Aronchick:毫无疑问,机器学习正改变着几乎所有产业的商业模式。在这么大的场合,有那么多的听众,或者说有那么多的行业顶尖人才齐聚一堂来探讨技术的未来,大家总会提到最新的技术趋势和进展。超过 4000 多名的 Kubecon 大会参会者不仅想了解别人所从事的尖端机器学习,也想知道他们是怎么运用这些新技术来改善自己的流程的。

这也就是说,许多新项目都跳出了原有的框架,同时还有不少的改变。实际上,之前的许多公告都说过有完整的机器学习堆栈。我想说我们首先要转换的一个思维是,Kubernetes 上的机器学习不仅仅是指未来的事情,它其实是一个现当下的事情。

InfoQ:您能描述一下机器学习和 Kubernetes 之间的全面协同过程吗?

Aronchick:对于现存大量数据的使用来说,机器学习是一个新方法,同时它也能拿出比以前更准确、更快的方案来解决业务问题。但是,机器学习解决方案的基础架构支持 (大多数都相当复杂) 仍然比较新,需要大量的自定义脚本、依赖项分析和兼容性问题等。而且,机器学习栈堆通常部署在多个位置 (用于开发、训练和生产),保持每个节点的同步使得使用机器学习这个挑战更艰难。

为帮助大规模地部署和运行这些机器学习平台,Kubernetes 提供了一个通用的平台。凭借在多个云环境中运行的丰富编排,Kubernetes 为数据科学家、开发人员和 IT 专业人员提供了一种简单的方法来部署、运行和管理复杂的、多服务的机器学习工作负载。

InfoQ:与使用 Kubeflow 相比,通过 Helm 图表在 Kubernetes 上安装机器学习工具有什么不同呢?

Aronchick: 机器学习工具的实际安装是通过封装系统完成的。目前,Kubeflow 正在使用 ksonnet ,我们仍然希望它可以支持多种不同的部署技术。Kubeflow 的价值更多在于用简单的方式使大量的工具共同运行得更好。我们也在评估所有其他的选项,包括 helm 和 ksonnet 等等,但是,我们想在安装时为用户提供一组更丰富的对象,以确保所涉及的多个包能够很好地共同运行,并且立即可用。

InfoQ:假设我是一名机器学习 / 数据科学家,Kubeflow 会如何简化我的日常工作,而不是通过添加 Kubzernetes 层来使之复杂化?

Aronchick:因为 Kubernetes 提供部署对象和服务端点,如果你是一个数据工程师,这也就意味着你只需要关注和你相关的点,也就是解决数据问题。我们不希望、也不需要数据科学家为了使用 Kubeflow 去安装复杂的 Kubernetes 设置。在你的笔记本电脑上,你可能需要使用 minikube。在你的本地集群上,你可能需要使用由你的组织所提供的 Kubernetes 安装。在云端,你可以使用托管的 Kubernetes 提供程序(provider)。在每种情况下,你都只能看到一条安装 Kubeflow 的指令,按需安装之后你就可以看到你所熟悉的 Tensorflow 服务和 Jupyter 笔记本了。

InfoQ:关于机器学习工具包的基础架构支持如何被集成为 Kubeflow 这一点,您能给我们再详述一下技术细节吗?

Aronchick:因为我们正在使用本地的 Kubernetes 工具,对现有部署包的集成是相当简单的。我们是以一个社区的形式来提供各种各样的选择的,但有的人可能喜欢其他的直接介入的机器学习工具包,因为他们最了解他们的平台(我们现在也正在与其他的团队接洽)。关于下一个我们将要添加的工具包将会是什么这个问题,我们在 Github repo 上进行了一些讨论,但总体来说,我们是愿意为用户提供帮助的。

InfoQ:社区是如何支持 Kubeflow 的呢?还有 Kubeflow 的发展蓝图是什么呢,会不会加入针对类似 Cloud Foundry 和 OpenShift 等平台的支持?

Aronchick: Kubeflow 是本地的 Kubernetes,而且我们正致力于确保这种情况继续下去。这也就意味着在我们的计划中我们将一直支持和 Kubernetes 相一致的任何平台,也包括 Cloud Foundry 和本地 OpenShift(Red Hat 已经加入我们的项目了)。我们也已经对外公布了与 Canonical/Ubuntu,Weaveworks,Caicloud 以及许多其他平台提供商的合作。我们非常重视无所不在的机器学习堆栈的价值,也努力确保 Kubeflow 能够满足每一个数据科学家的需要,随时随地提供服务。

如果想了解主会场演讲和其他记录,可前往 Kubecon 的日程页面获取。

查看英文原文: Q&A on Machine Learning and Kubernetes with David Aronchick of Google from Kubecon 2017


感谢罗远航对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2018-01-31 18:001297
用户头像

发布了 21 篇内容, 共 13.2 次阅读, 收获喜欢 13 次。

关注

评论

发布
暂无评论
发现更多内容

Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?

OpenHacker

Docker

裴丹:AIOps 智能运维经验分享

华为云开发者联盟

云计算 后端

技术分享| 快对讲-5G对讲

anyRTC开发者

音视频 传输协议 快对讲 RAST

iOS 中的代理模式

NewBoy

ios 前端 移动端 iOS 知识体系 7月月更

记录一次现场 mysql 重复记录数据的排查处理

安逸的咸鱼

MySQL 实战案例 7月月更

在线版 Python 图片转字符画

OpenHacker

Python

2022年盘点,主流前端跨端技术方案(包含小程序)

Speedoooo

flutter taro Weex React Native finclip

版本通告|Apache Doris 1.1 Release 版本正式发布!

SelectDB

数据库 数据仓库 Doris apache doris 版本更新

五分钟拿捏Python字典-Python3入门必备[字典详细操作]

迷彩

Python 字典 7月月更 入门教程

Python 入门指南之虚拟环境和包

海拥(haiyong.site)

7月月更

云图说丨OLAP开源引擎的一匹黑马,MRS集群组件之ClickHouse

华为云开发者联盟

数据库 后端

SaaS应用:实现企业数字化转型的最佳途径

Baklib

在上海想学web前端课程如何选择

小谷哥

大模型训练难于上青天?效率超群、易用的“李白”模型库来了

OneFlow

机器学习 gpu 模型训练

深度解析:LP流动性挖矿系统开发逻辑拆解

开发微hkkf5566

连麦直播系统软件——语音聊天系统

开源直播系统源码

软件开发 直播源码 开源源码 连麦语音直播 语音聊天直播

入门即享受!coolbpf 硬核提升 BPF 开发效率 | 龙蜥技术

OpenAnolis小助手

开源 技术 龙蜥大讲堂 BPF coolbpf

这些功能要是没有,我大 Pro 还怎么出来混!

CRMEB

企事业单位建设知识管理的七条建议

Baklib

知识管理 企事业单位

在武汉学习web前端开发课程哪家比较好

小谷哥

2022可信云大会 | 中国信通院云上软件工程评估结果即将发布

中国IDC圈

软件工程 可信云 评估结果

分布式锁用 Redis 还是 Zookeeper?

C++后台开发

redis zookeeper 分布式 后端开发 C++后台开发

首次公开!华为顶级团队合编300页Docker进阶手册,理论实战双收

冉然学Java

Java Docker 操作系统 #技术干货#

那个从「四大」出来的小哥哥,后来怎么样了|ONES 人物

万事ONES

冲刺!这篇1658页的《Java面试突击核心讲》学明白保底年薪30w

了不起的程序猿

Java java程序员 java面试 java编程

用户体验 | 银行如何优化APP用户体验

易观分析

用户体验

金融业转型升级的新范式,就“藏”在华为云数仓里

科技热闻

JavaScript基础之值和引用

7月月更

学习WEB前端去哪里培训比较好

小谷哥

SpringSecurity 添加验证码的两种方式

急需上岸的小谢

7月月更

如何用Apifox 的智能Mock功能?

Liam

前端 Mock

Kubecon 2017大会Google高级产品经理David Aronchick访谈:机器学习和Kubernetes_语言 & 开发_Rags Srinivas_InfoQ精选文章