大厂Data+Agent 秘籍:腾讯/阿里/字节解析如何提升数据分析智能。 了解详情
写点什么

Transformer 在推荐模型中的应用总结

  • 2019-11-29
  • 本文字数:2535 字

    阅读完需:约 8 分钟

Transformer在推荐模型中的应用总结

最近基于 transformer 的一些 NLP 模型很火(比如 BERT,GPT-2 等),因此将 transformer 模型引入到推荐算法中是近期的一个潮流。transformer 比起传统的 LSTM、GRU 等模型,可以更好地建模用户的行为序列。本文主要整理 transformer 在推荐模型中的一些应用。

1. Self-Attentive Sequential Recommendation

模型结构:



方法:


符号定义:



问题定义:模型输入是用户 u 的一个历史交互序列: [公式] , 其期望的输出是该交互序列一个时间刻的偏移: [公式] 。


Embedding 层


将输入序列 [公式] 转化成固定长度的序列 [公式] 。意思是如果序列长度超过 n,则使用最近 n 个行为。如果不足 n,则从左侧做 padding 直到长度为 n。


位置 embedding: 因为 self-attention 并不包含 RNN 或 CNN 模块,因此它不能感知到之前 item 的位置。本文输入 embedding 中也结合了位置 Embedding P 信息,并且位置 embedding 是可学习的:



Self-Attention 层


Transformer 中 Attention 的定义为:



本文中,self-attention 以 embedding 层的输出作为输入,通过线性投影将它转为 3 个矩阵,然后输入 attention 层:



为了避免在预测 i 时刻的 item 时用到后续时刻的信息,本文将符合(j > i)条件的 [公式] 与 [公式] 之间的连接 forbidding 掉,这是因为 self-attention 每个时刻的输出会包含所有时刻的信息。

Point-wise 前馈网络

尽管 self-attention 能够用自适应权重并且聚焦之前所有的 item,但最终它仍是个线性模型。可用一个两层的 point-wise 前馈网络去增加非线性同时考虑不同隐式维度之间的交互:



  • Self-Attention layer 的堆叠

  • 预测层

  • 最后采用 MF 层来预测相关的 item i:



其中 [公式] 是给定 t 个 item,下一个 item i 的相关性。N 是 item embedding 矩阵。


为了减少模型尺寸及避免过拟合,共用一个 item embedding:



  • 显式用户建模

  • 为了提供个性化推荐,当前主要有两种方法:学习显式的用户 embedding 表示用户偏好(MF,FPMC,Caser);考虑用户之前的行为,通过访问过的 item 的 embedding 推测隐式的用户 embedding。本文采用第二种方式,同时额外在最后一层插入显式用户 embedding [公式] ,例如通过加法实现:


但是通过实验发现增加显式用户 embedding 并没有提升效果。


  • 网络训练

  • 定义时间步 t 的输出为:



用二元交叉熵损失作为目标函数:


2. Next Item Recommendation with Self-Attention

模型:



本文亮点是同时建模用户短期兴趣(由 self-attention 结构提取)和用户长期兴趣。其短期兴趣建模过程如下:


假定使用用户最近的 L 条行为记录来计算短期兴趣。可使用 X 表示整个物品集合的 embedding,那么,用户 u 在 t 时刻的前 L 条交互记录所对应的 embedding 表示如下:



其中每个 item 的 embedding 维度为 d,将 [公式] 作为 transformer 中一个 block 的输入:



这里需要注意和传统 transformer 的不同点:


  • 计算 softmax 前先掩掉 [公式] 矩阵的对角线值,因为对角线其实是 item 与本身的一个内积值,容易给该位置分配过大的权重。

  • 没有将输入 [公式] 乘以 [公式] 得到 [公式] ,而是直接将输入[公式]乘以 softmax 算出来的 score。

  • 直接将 embedding 在序列维度求平均,作为用户短期兴趣向量。

  • 另外加入了时间信号:

  • self-attention 模块只使用用户最近的 L 个交互商品作为用户短期的兴趣。那么怎么建模用户的长期兴趣呢?可认为用户和物品同属于一个兴趣空间,用户的长期兴趣可表示成空间中的一个向量,而某物品也可表示为成该兴趣空间中的一个向量。那如果一个用户对一个物品的评分比较高,说明这两个兴趣是相近的,那么它们对应的向量在兴趣空间中距离就应该较近。这个距离可用平方距离表示:



其中 U 是用户的兴趣向量,V 是物品的兴趣向量


综合短期兴趣和长期兴趣,可得到用户对于某个物品的推荐分,推荐分越低,代表用户和物品越相近,用户越可能与该物品进行交互:



模型采用 pair-wise 的方法训练,即输入一个正例和一个负例,希望负例的得分至少比正例高γ,否则就发生损失,并在损失函数加入 L2 正则项:


  1. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer

  2. 亮点:结合使用预训练的 BERT 模型


模型架构:



Embedding Layer


模型的输入是用户历史交互序列,对交互序列中的每一个物品 i,其 Embedding 包含两部分,一部分是物品的 Embedding,用 vi 表示,另一部分是位置信息的 Embedding,用 pi 表示。这里的 pi 是可学习的。


Transformer Layer


主要包括 Multi-Head Self-Attention 层和 Position-Wise Feed-Forward Network,其中 Multi-Head Self-Attention 计算过程如下:



Position-Wise Feed-Forward Network 的作用是将每个位置(也可理解为每个时间刻 t)上的输入分别输入到前向神经网络中:



Stacking Transformer Layer


使用了类似于 resnet 的 skip 连接结构:



Output Layer


模型训练


因为在 BERT4Rec 中,输入历史序列[v1,v2,…,vt-1],输出的是包含上下文信息的向量[h1,h2,…,ht-1],这里每个向量 ht 都包含了整个序列的信息。如果要预测用户 t 时刻的交互物品 vt,如果直接把 vt 作为输入,那么其余每个物品在 Transformer Layer 中会看到目标物品 vt 的信息,造成一定程度的信息泄漏。因此可把对应位置的输入变成[mask]标记。打标记的方式和 BERT 一样,随机把输入序列的一部分遮盖住,然后让模型来预测这部分对应的商品:


最终的 loss 函数为:



4. Behavior Sequence Transformer


这里就不详细介绍了,可参考我之前的一篇文章:https://zhuanlan.zhihu.com/p/72018969

总结

transformer 结构可用于对用户短期内的行为序列进行建模(比如最近的 n 次行为序列),比起传统的 RNN、CNN 模型,transformer 的优势在于它在每个时刻 t 求得的隐藏向量 ht 都包含整个序列的信息(这其实就是 self-attention 结构的优势,可建模出任意一个时刻 item 和所有时刻 item 的相关性)。因此可将 transformer 结构用于用户的短期兴趣 embedding 建模,然后再将该 embedding 向量用于召回或者 ranking 阶段。


参考文献:


https://arxiv.org/pdf/1808.09781.pdf


https://arxiv.org/pdf/1808.06414.pdf


https://arxiv.org/pdf/1904.06690.pdf


https://arxiv.org/pdf/1905.06874.pdf


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/85825460


2019-11-29 08:003777

评论

发布
暂无评论
发现更多内容

区块链电子合同--赋能企业数字化转型

13530558032

从0开始的支付业务架构演进之路

誰敢得罪我

勇做全球区块链“分布式存储”领航

CECBC

分布式

拥抱云原生,基于eBPF技术实现Serverless节点访问K8S Service

UCloud技术

容器 云原生 k8s serverles

可能是最糟糕的愚人节玩笑:科技史上的美式疯狂

脑极体

智能取色-为多元化的产品场景选择完美的色彩组合

百度贴吧技术团队

智能取色 个性化 视觉策略 沉浸感

WebRtc学习之旅 —— Android端应用开发

小驰笔记

WebRtc学习之旅 —— 初认识

小驰笔记

I'm Back

小天同学

思考 个人感悟 4月日更

历史命令被黑客删除?教你实时备份

运维研习社

Linux 4月日更 服务器安全

零基础学Tableau系列 | 01—Tableau简介、条形图与直方图

不温卜火

数据可视化 数据清洗 4月日更

架构培训作业

肖春

架构师训练营

区块链的创新技术给奢侈品行业带来了新的机会

CECBC

奢侈品

2021年金三银四全新版互联网大厂面试题,分类80份PDF,累计4700页

Java 编程 程序员 架构 面试

探索js让你的网页“自己开口说话”

云小梦

JavaScript 音视频 audioContext API

2021阿里面试通关手册必备:5000字面经解析(技术/攻克)

比伯

Java 架构 面试 程序人生 计算机

百家号在线视频编辑器的技术演进

百度Geek说

大前端

朱嘉明:《量子时代和数字经济2.0 》推荐序

CECBC

数字经济

莫高窟永不褪色的微笑,照耀在华为未曾止步的数据保护征程

脑极体

1.4 Go语言从入门到精通:Go代理goproxy

xcbeyond

Go 语言 4月日更 goproxy

大厂面试必须掌握的 Linux 性能优化题

倪朋飞

Linux 面试 性能优化

专科出身,2年进入苏宁,5年跳槽阿里,论我是怎么快速晋升的?

钟奕礼

Java 编程 程序员 架构 面试

gorm源码阅读之schema

werbenhu

Go 语言 gorm

Rust:范型使用trait限定的一点总结

Microwood

rust Trait 范型 范型约束Output Add

新动能 · 新机遇:SaaS软件提供商 Zoho 25 周年战略再升级

科创人

Java高级研发:2021阿里天猫、中间件、蚂蚁金服JD要求+面题答案

钟奕礼

Java 编程 程序员 架构 面试

源中瑞智慧平安社区--为平安生活助力

13530558032

Golang 泛型浅析

D

开源 云原生 编译器 语言 Go 语言

Redis为什么变慢了?一文讲透如何排查Redis性能问题 | 万字长文

Java redis 程序员 架构 计算机

美团点评高级1234面:算法+HashMap+Zookeeper+线程+Redis+kafka

钟奕礼

Java 编程 程序员 架构 面试

访问控制相关概念及常见模型

龙归科技

身份和访问管理

Transformer在推荐模型中的应用总结_语言 & 开发_Alex-zhai_InfoQ精选文章