写点什么

兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操

  • 2024-03-27
    北京
  • 本文字数:5962 字

    阅读完需:约 20 分钟

大小:875.54K时长:04:58
兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操

随着版本迭代,Apache Doris 一直在拓展应用场景边界,从典型的实时报表、交互式 Ad-hoc 分析等 OLAP 场景到湖仓一体、高并发数据服务、日志检索分析及批量数据处理,越来越多用户与企业开始将 Apache Doris 作为统一的数据分析产品,以解决多组件带来的数据冗余、架构复杂、分析时效性低、运维难度大等问题。


然而在架构统一和升级的过程中,由于部分大数据分析系统有自己的 SQL 方言、需要对 SQL 语法进行一定程度的修改,另外由于大量原有系统的 SQL 与业务逻辑相关联,需要进行大量业务逻辑的改造,这不可避免地增加了额外迁移成本。


为了帮助企业有效应对这些挑战,Apache Doris 2.1 版本提供了 SQL 方言兼容与转换方案—— Doris SQL Convertor,兼容了包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等在内多种 SQL 语法。 用户可以在 Doris 中直接使用相应系统的 SQL 语法执行查询,也可以在可视化界面对原有的 SQL 语句进行批量转换。通过 Doris SQL Convertor,能够有效减轻用户业务迁移成本,提供更加顺畅地业务迁移体验

核心特性

无缝切换,高度兼容多种 SQL 方言

无需手动对原有系统的 SQL 方言进行改写,用户仅需要在 Apache Doris 会话变量中设置 set sql_dialect= XXX,即可直接在 Doris 中执行该 SQL 语法的查询。


我们在实际客户场景中进行了大量兼容性测试,以 ClickHouse 和 Presto 方言为例。在某些社区用户的实际线上业务 SQL 兼容性测试中,Doris SQL Convertor 在全部 3 万多条查询语句中,与 Presto SQL 兼容度高达 99.6% ,与 ClickHouse 方言兼容度高达 98%。目前,Doris SQL Convertor 已支持了多种主流 SQL 方言,包括 Presto、Trino、Hive、ClickHouse、PostgreSQL 等。后续我们也将继续收集用户的反馈,在持续优化多种语法兼容性的同时,支持如 Teradata 、SQL Server、Snowflake 等更多方言,以满足用户更多样化的业务需求。

简单易用,支持一键批量生成

除了直接在命令行中执行查询 SQL 以外,我们还提供了可视化界面,支持文本输入和文件上传两种模式。对于单个 SQL,用户可以直接在 Web 界面中进行文本输入。如若存量 SQL 规模庞大,可以通过上传文件进行多个 SQL 的一键批量转换。


安装部署与使用介绍

服务部署与使用

1. 下载最新版本的 SQL 方言转换工具


2.在任意 FE 节点,通过以下命令启动服务。


  • 该服务是一个无状态的服务,可随时启停;

  • 该命令中的 port=5001 是服务端口,可以指定为任意一个可用端口。

  • 建议在每个 FE 节点都单独启动一个服务。


nohup ./doris-sql-convertor-1.0.1-bin-x86 run --host=0.0.0.0 --port=5001 &
复制代码


3.启动 Doris 集群,版本需为 Doris 2.1 或更高


4.在 Doris 中设置 SQL 方言转换服务的 URL。该命令中127.0.0.1:5001 是 SQL 方言转换服务的部署节点 IP 和端口。


MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"
复制代码


在完成服务部署后,我们可以直接在命令行中执行 SQL,在此以 Presto 与 Clickhouse SQL 方言为例。在会话变量中设置set sql_dialect = ``XXX 即可开启服务,执行示例如下:


Presto


mysql> set sql_dialect=presto;                                                                                                                                                                                                             Query OK, 0 rows affected (0.00 sec) 
mysql> SELECT cast(start_time as varchar(20)) as col1, array_distinct(arr_int) as col2, FILTER(arr_str, x -> x LIKE '%World%') as col3, to_date(value,'%Y-%m-%d') as col4, YEAR(start_time) as col5, date_add('month', 1, start_time) as col6, REGEXP_EXTRACT_ALL(value, '-.') as col7, JSON_EXTRACT('{"id": "33"}', '$.id')as col8, element_at(arr_int, 1) as col9, date_trunc('day',start_time) as col10 FROM test_sqlconvert where date_trunc('day',start_time)= DATE'2024-05-20' order by id; +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+ | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 | +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+ | 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 | +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+ 1 row in set (0.03 sec)
复制代码


ClickHouse


mysql> set sql_dialect=clickhouse;                                                                                                                                             Query OK, 0 rows affected (0.00 sec)                                                                                                                                                                                                                                                                                                                          mysql> select  toString(start_time) as col1,                                                                                                                                                arrayCompact(arr_int) as col2,                                                                                                                                               arrayFilter(x -> x like '%World%',arr_str)as col3,                                                                                                                           toDate(value) as col4,                                                                                                                                                       toYear(start_time)as col5,                                                                                                                                                   addMonths(start_time, 1)as col6,                                                                                                                                             extractAll(value, '-.')as col7,                                                                                                                                              JSONExtractString('{"id": "33"}' , 'id')as col8,                                                                                                                             arrayElement(arr_int, 1) as col9,                                                                                                                                            date_trunc('day',start_time) as col10                                                                                                                                     FROM test_sqlconvert                                                                                                                                                         where date_trunc('day',start_time)= '2024-05-20 00:00:00'                                                                                                               order by id;                                                                                                                                                   +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    | col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |                                    +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    | 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |                                    +---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+                                    1 row in set (0.02 sec)
复制代码

可视化界面部署与使用

针对大规模历史业务逻辑转换的需求,推荐使用可视化界面,通过文件批量上传完成方言转换。


可视化界面的部署过程如下:


  1. 环境要求: docker 、docker-compose

  2. 获取 Doris-SQL-Convertor Docker 镜像包(文末附获取 Docker 镜像包方式)

  3. 创建镜像网络


      docker network create app_network
复制代码


  1. 解压安装包


      tar xzvf doris-sql-convertor-1.0.1.tar.gz            cd doris-sql-convertor
复制代码


  1. 编辑环境变量 vim .env


      FLASK_APP=server/app.py      FLASK_DEBUG=1      API_HOST=http://doris-sql-convertor-api:5000            # DOCKER TAG      API_TAG=latest      WEB_TAG=latest
复制代码


  1. 启动


      sh start.sh
复制代码


在部署完成后,可以在本地浏览器中通过 ip:8080 访问。当前默认端口为 8080,可以修改映射端口。在界面中,可直接选择来源方言,输入需要转换的 SQL 方言,并点击 Convert 实现转换。


提示:

  1. 进行批量转换时每条 SQL 需要以 ; 结束

  2. 最多支持 239 个 UNION ALL 转换

结束语

作为一款强大而易用的 SQL 方言转换工具,Doris SQL Convertor 致力于提供高效、稳定的 SQL 迁移解决方案,满足用户多样化的业务需求。无论是平滑无痕的方言转换,还是复杂的批量 SQL 处理任务,Doris SQL Convertor 都能够提供快速而稳定的转换体验,确保转化过程中的完整性与准确性。未来,我们将不断扩展支持更多的 SQL 方言并持续提高 SQL 方言的兼容性,以满足不断变化的迁移需求。

2024-03-27 20:527860
用户头像
李冬梅 加V:busulishang4668

发布了 1180 篇内容, 共 802.6 次阅读, 收获喜欢 1300 次。

关注

评论

发布
暂无评论
发现更多内容

多指标异常检测方法综述

云智慧AIOps社区

AIOPS 异常检测 技术学习 智能运维 指标

万亿养老市场如何抢占商机?云巢智慧康养物联网加速器,三招化解ISV痛点!

华为云开发者联盟

物联网 华为云 iotda 沃土云创计划 智慧康养

在线黑客帝国文字效果生成工具

入门小站

工具

如何利用国产图数据库打造金融行业方案?

星环科技

Go 语言实现 WebSocket 推送

全象云低代码

websocket 低代码开发 Go 语言

译文 | MySQL 8.0 密码管理策略(一)

RadonDB

MySQL 数据库

CRM系统如何帮助你的业务?

低代码小观

企业管理 CRM

linux之登录式shell和非登录式shell

入门小站

Linux

Prometheus 2.30.0 新特性

耳东@Erdong

release Prometheus 9月日更

13个VSCode使用技巧,开启高效的开发模式

华为云开发者联盟

vscode 日志 开发 插件 Git存储库

月度发布 | 极狐GitLab14.3升级40+新功能!

极狐GitLab

乌镇回溯 | 构建网络空间命运共同体,旺链科技做了哪些?

旺链科技

数字经济 产业区块链 世界互联网大会

Nacos-Group

平凡人生

分布式系统都要遵守的CAP

卢卡多多

CAP 9月日更

拒绝裸奔,为 Elasticsearch 设置账号密码(qbit)

qbit

https 安全 Kibana

扒一扒面向对象编程的另一面

华为云开发者联盟

编程 面向对象 对象 对象编程

基于虹软SDK,适配Camera1、Camera2、CameraX,实现人脸识别(Android)

小驰笔记

android 音视频 人脸识别 引航计划

第7章-《Linux一学就会》-Centos8 用户管理

学神来啦

Linux linux运维 linux学习 Linux教程

基于云的 CRM 能为您的业务提供哪些服务?

低代码小观

企业管理 CRM

详解html5新增的标签与css3中伪类和伪元素

你好bk

html5 css3 大前端 基础技能

美女程序“媛”:从工程师到架构师,我的代码人生

融云 RongCloud

程序员 代码人生

CRM是什么,你有认真了解过CRM吗?

低代码小观

企业管理 CRM

[外文资源]最好的 Golang 博客

baiyutang

golang 9月日更

阿里云天池赛题解析——深度学习篇重磅发布!

博文视点Broadview

被客户像小学生一样训话

boshi

创业

Python代码阅读(第30篇):找到列表中的奇偶异常项

Felix

Python 编程 Code Programing 阅读代码

netty系列之:分离websocket处理器

程序那些事

Java 架构 Netty 程序那些事

Talk to AI,揭秘背后的语音识别数据

澳鹏Appen

语音 nlp 语音识别 训练数据 语音识别模型

融云 IM+RTC+X「全」通信解决方案,赋能全平台、多语言开发者

融云 RongCloud

通信 技术栈 语言 & 开发

带你了解数仓安全测试的TLS协议

华为云开发者联盟

安全 通信 密钥 SSL/TLS协议 加密通信

StartDT Hackathon | 泛元数据:让数据成为资产

奇点云

兼容 Presto、Trino、ClickHouse、Hive 近 10 种 SQL 方言,Doris SQL Convertor 解读及实操_数据湖仓_SelectDB_InfoQ精选文章