写点什么

艾伦人工智能研究所发布 AllenNLP 1.0 ,设计和评估新深度学习模型更容易

  • 2020-07-03
  • 本文字数:1693 字

    阅读完需:约 6 分钟

艾伦人工智能研究所发布 AllenNLP 1.0 ,设计和评估新深度学习模型更容易

本文最初发布在 Medium 博客,经原作者 Michael Schmitz 授权,InfoQ 中文站翻译并分享。


AI2 已发布其免费 NLP 库的官方版本 v1。AllenNLP 使得为几乎任何自然语言处理问题设计和评估新的深度学习模型变得更加容易,同时还提供了在云端或笔记本计算机上轻松运行这些模型的基础架构。

AllenNLP 1.0 现已发布

AllenNLP GitHub 项目地址:https://github.com/allenai/allennlp


AllenNLP 是一个来自 AI2 的免费、开源的自然语言处理平台,该平台的设计初衷是让研究人员能够轻松地构建最先进的模型。AllenNLP 通过提供与研究人员熟悉的概念相关的抽象和 API,以及一套近期文献中的参考实现,加快了将想法转化为有效模型的速度。最近,AI2 发布了 AllenNLP 1.0,为社区提供了新的模型、更好的性能以及新的资源。


AllenNLP 1.0 版本是 AI2 工程团队工作几个月以来的成果(包括超过 500 次 GitHub 提交),代表了该库重要的成熟里程碑。AI2 已经改进了平台的几乎每个角落,从文档到添加新的 NLP 组件,再到调整 API,从而使它们可以更好地为社区提供长期服务。



AllenNLP 演示中的命名实体识别示例。


需要注意的是,目前 AllenNLP 需要 Python 3.6.1 或更高版本。安装 AllenNLP 的首选方式是通过 pip。只需在 Python 环境中运行 pip install allennlp 即可。AllenNLP 支持 Linux 和 Mac OSX,尚不支持 Windows。


AllenNLP 库于 2017 年发布,提供了自然语言组件,研究人员可以轻松地构建新模型。模型架构可以由高级配置语言清楚地指定,这也为科学家们提供了一种简单的方法来实验不同的架构和参数。自发布以来,AllenNLP 已经发展到包括许多模型的参考实现,有超过 20 个模型的交互式演示。GitHub 上有 800 多个开源项目使用了这个库,学术出版物也引用了数百次。要了解更多关于 AllenNLP 平台的信息,请阅读白皮书或查看 AI2 的新指南


为了保持相关性,平台工程师与 AI2 的研究科学家紧密合作,他们正在自然语言处理和人工智能的前沿领域进行着更广泛的创新。ELMo 就是一个这样的例子,在论文《深层次上下文词表征》(Deep contextualized word representations)中已有描述,该论文首先展示了语言模型如何在各种任务中产生显著效果。(要了解更多关于这些模型及其影响的信息,请参阅《上下文词表征:将单词输入计算机》(Contextual Word Representations: Putting Words into Computers))AllenNLP 平台旨在加速新的研究,这些研究利用了 ELMo 等通用模块以及此后开发的其他模块。

版本 1.0 都包括什么?

版本 1.0 的主要亮点包括:


  1. 几个新模型,包括 TransformerQA共指模型(Coreference model)、NMN 阅读理解模型、以及用于文本蕴涵(Textual entailment,TE)的 RoBERTa 模型


译注:文本蕴涵(Textual entailment TE)在自然语言处理是一个文本片段之间的定向关系。拥有一个文本片段的含意时,可以从另一个文本如下关系。TE 的框架中,将会导致必须需要的文本被称为文本(T)和假设(H)作为分别。文本蕴涵是不一样的纯逻辑蕴涵,它有一个更宽松的定义:“T 推导到 H”(T⇒H),通常情况下,如果一个人阅读 T 将推断为 H 是最有可能的正确的关系。文本蕴含关系是有方向性的,如正向的“T 推导到 H”或反向的“H 推导到 T”。


  1. 新的《AllenNLP 指南》(AllenNLP Guide,),这是一个交互式资源,全面介绍了 AI2 的库和实验框架。

  2. 整个库的性能改进,包括切换到原生 PyTorch 数据加载,通过 Apex 启用对 16 位浮点的支持,以及提高多 GPU 训练的效率。

  3. 将模型拆分为单独的模型仓库(allennlp-models),从而提供一个具有较少依赖性的干净核心库。

  4. 将实验框架从核心库组件中解耦,无需实验框架即可更轻松地使用该库,并简化了过程中的配置文件。



AllenNLP 演示中的文本蕴涵示例。

AllenNLP 的下一步

现在版本 1.0 已经发布,AI2 正在壮大他们的平台团队,这样他们就可以更好地为科学家提供构建最先进的自然语言处理模型所需的研究成果。


AI2 计划继续在性能改进和基础设施方面进行投资,以使建立一个广泛的演示库变得更容易,并与 AI2 研究科学家密切合作,以确保该库能够跟上他们的最新研究。


原文链接:


https://medium.com/ai2-blog/allennlp-1-0-df0327445509


2020-07-03 08:001856
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 567.8 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

前端开发培训机构怎么样

小谷哥

大数据学习培训机构该怎么去选择

小谷哥

DevOps系列之 —— 持续规划与设计(三)敏捷项目管理的方法【Kanban 与 Scrum】

若尘

DevOps #DevOps 三周年连更

HuggingGPT 强势来袭,LLM+ 专家模型,迈向更通用的AI

Zilliz

Zilliz Towhee ChatGPT LLM huggingface

【坚果派-坚果】获取OpenHarmony 3.2 Release源码的两种方式

坚果

HarmonyOS OpenHarmony OpenHarmony3.2 三周年连更

达观助手AI写作下载安装教程及特色功能详解,速速收藏体验!

NLP资深玩家

对话ChatGPT:Prompt是普通人“魔法”吗?

Alter

华中科技大学网络空间安全学院正式加入openGauss社区

江苏智慧公厕:让厕所成为城市新名片

光明源智慧厕所

智慧园区

openGauss社区三月运作报告

MobTech ShareSDK|如何从分享到回流

MobTech袤博科技

zookeeper的节点加密方式及分布式锁实现过程

浅羽技术

三周年连更

5 分钟带你小程序入门 [实战总结分享]

程序员海军

小程序 微信小程序 前端 三周年连更

一文读懂封装

断墨寻径

#java 三周年征文

别再吐槽公厕了!杭州智慧公厕解决方案带来惊喜

光明源智慧厕所

智慧城市

openGauss都做了哪些算子优化工作?

软件测试/测试开发丨基于 JMeter 完成 Dubbo 接口的测试

测试人

dubbo 软件测试 Jmeter 自动化测试 测试开发

慌了?ChatGPT吃我的饭,还要掀我碗

引迈信息

AI 低代码 ChatGPT JNPF

一文读懂域名注册

火山引擎边缘云

证书 域名 域名服务器

vue3 +ts 如何安装封装axios

肥晨

Vue3 三周年连更

一文读懂Annotation

老周聊架构

三周年连更

Node.js实现JWT应用到服务器

格斗家不爱在外太空沉思

node.js 三周年连更

devops|中小公司不要做研发效能度量

laofo

DevOps 研发效能 效能度量 DevOps工具链 研发效能度量

危中蕴机:Oi! Network展现出的勇气和决心

股市老人

openGauss 5.0.0版本正式发布!

云原生时代全链路观测体系构建

嘉为蓝鲸

盘点 8 款好用的 API 接口文档管理工具

Liam

程序员 接口文档 API 接口规范 接口编写

全球首个完全开源的指令跟随大模型;T5到GPT-4最全盘点

OneFlow

加速文件传输协议如何工作

镭速

车企外卷:一个关于智能手机的“围城故事”

脑极体

手机 车企

艾伦人工智能研究所发布 AllenNLP 1.0 ,设计和评估新深度学习模型更容易_AI&大模型_Michael Schmitz_InfoQ精选文章