写点什么

如何使用 TFX 中的 NSL 框架实现图的正则化?

  • 2020-12-19
  • 本文字数:3596 字

    阅读完需:约 12 分钟

如何使用 TFX 中的 NSL 框架实现图的正则化?

神经结构化学习(Neural Structured Learning,NSL)是 TensorFlow 中的一个框架,可用于训练具有结构化信号的神经网络。它以两种方式处理结构化数据:(i)作为显式图,或(ii)作为隐式图,其中邻居在模型训练期间动态生成。具有显式图的 NSL 通常用于神经图学习,而带有隐式图的 NSL 通常用于对抗性学习。这两种技术都是作为 NSL 框架中的正则化形式实现的。因此,它们只影响训练工作流,故模型服务工作流保持不变。在本文的其余部分,我们将主要关注如何使用 TFX 中的 NSL 框架实现图的正则化。


使用 NSL 构建图正则化模型的高级工作流需要执行以下步骤:


  1. 若无可用图,则构建一个图。

  2. 使用图和输入示例特征来增强训练数据。

  3. 使用增强的训练数据将图的正则化应用到给定的模型。


这些步骤并不会立即映射到现有的 TFX 管道组件 上。但是,TFX 支持自定义组件,这些组件允许用户在其 TFX 管道中实现自定义处理。有关 TFX 中的自定义组件的介绍,请参阅这篇博文《创建自定义 TFX 组件》(Creating a Custom TFX Component)。因此,要在 TFX 中创建包含上述步骤的图正则化模型,我们将使用额外的定制 TFX 组件。


为了演示一个使用 NSL 的 TFX 管道示例,让我们考虑对 IMDB 数据集 上的情感分类任务。这里 提供了一个基于 CoLab 的教程,该教程演示了如何在原生 TensorFlow 使用 NSL 来完成这个任务,我们将使用它作为 TFX 管道示例的基础。

图正则化与自定义 TFX 组件


为了在 TFX 中为这一任务构建一个图正则化的 NSL 模型,我们将使用自定义 Python 函数 方法定义三个组件。以下是使用这些自定义组件的示例的 TFX 管道示意图。我们跳过了通常位于 Trainer 组件之后的组件,例如 Evaluator、Pusher 等。


图 1:使用图正则化的文本分类的 TFX 管道示例


在此图中,只有自定义组件(粉色)和图正则化 Trainer 组件具有 NSL 相关逻辑。值得注意的是,这里显示的自定义组件只是说明性的,可能还可以用其他方式构建功能等效的管道。现在,我们将更详细地描述每个自定义组件,并显示它们的代码段。

识别示例


这个自定义组件为每个训练示例分配一个唯一的 ID,用于将每个训练示例与图中的对应邻居关联起来。


@componentdef IdentifyExamples(    orig_examples: InputArtifact[Examples],    identified_examples: OutputArtifact[Examples],    id_feature_name: Parameter[str],    component_name: Parameter[str]  ) -> None:

# Compute the input and output URIs. ...

# For each input split, update the TF.Examples to include a unique ID. with beam.Pipeline() as pipeline: (pipeline | 'ReadExamples' >> beam.io.ReadFromTFRecord( os.path.join(input_dir, '*'), coder=beam.coders.coders.ProtoCoder(tf.train.Example)) | 'AddUniqueId' >> beam.Map(make_example_with_unique_id, id_feature_name) | 'WriteIdentifiedExamples' >> beam.io.WriteToTFRecord( file_path_prefix=os.path.join(output_dir, 'data_tfrecord'), coder=beam.coders.coders.ProtoCoder(tf.train.Example), file_name_suffix='.gz'))

identified_examples.split_names = orig_examples.split_names retu
复制代码


make_example_with_unique_id() 函数的作用是:更新给定的示例,使其包含唯一 ID 的附加特征。

SynthesizeGraph


如上所述,在 IMDB 数据集中,没有给出显式图作为输入。因此,在演示图正则化之前,我们先构建一个。对于这个示例,我们将使用预训练的文本嵌入模型将电影评论中的原始文本转换为嵌入,然后使用生成的嵌入来构建图。


SynthesizeGraph 自定义组件为我们的示例处理图的构建,请注意,它定义了一个新的 Artifact,名为 SynthesizeGraph,它将是这个自定义组件的输出。


 """Custom Artifact type"""class SynthesizedGraph(tfx.types.artifact.Artifact):  """Output artifact of the SynthesizeGraph component"""  TYPE_NAME = 'SynthesizedGraphPath'  PROPERTIES = {      'span': standard_artifacts.SPAN_PROPERTY,      'split_names': standard_artifacts.SPLIT_NAMES_PROPERTY,  }

@componentdef SynthesizeGraph( identified_examples: InputArtifact[Examples], synthesized_graph: OutputArtifact[SynthesizedGraph], similarity_threshold: Parameter[float], component_name: Parameter[str] ) -> None:

# Compute the input and output URIs ...

# We build a graph only based on the 'train' split which includes both # labeled and unlabeled examples. create_embeddings(train_input_examples_uri, output_graph_uri) build_graph(output_graph_uri, similarity_threshold) synthesized_graph.split_names = artifact_utils.encode_split_names( splits=['train']) retu
复制代码


create_embeddings() 函数涉及使用 TensorFlow Hub 上的一些预训练模型将电影评论中的文本转换为相应的嵌入内容, build_graph() 函数涉及在 NSL 中调用 build_graph() API。

GraphAugmentation


这个自定义组件的目的是将示例特性(电影评论中的文本)与从嵌入构建的图相结合,以生成一个增强的训练数据集。由此产生的训练示例也将包括来自相应邻居的特征。


@componentdef GraphAugmentation(    identified_examples: InputArtifact[Examples],    synthesized_graph: InputArtifact[SynthesizedGraph],    augmented_examples: OutputArtifact[Examples],    num_neighbors: Parameter[int],    component_name: Parameter[str]  ) -> None:

# Compute the input and output URIs ...

# Separate out the labeled and unlabeled examples from the 'train' split. train_path, unsup_path = split_train_and_unsup(train_input_uri)

# Augment training data with neighbor features. nsl.tools.pack_nbrs( train_path, unsup_path, graph_path, output_path, add_undirected_edges=True, max_nbrs=num_neighbors )

# Copy the 'test' examples from input to output without modification. ...

augmented_examples.split_names = identified_examples.split_names re
复制代码


split_train_and_unsup() 函数的作用是:将输入示例分别分为已标记和未标记的示例,然后使用 pack_nbrs() NSL API 创建增强的训练数据集。

图正则化 Trainer


现在,我们所有的自定义组件都已实现,TFX 管道中剩余的特定于 NSL 的新增内容在 Trainer 组件中。下面是图正则化 Trainer 组件的简化视图:


  estimator = tf.estimator.Estimator(       model_fn=feed_forward_model_fn, config=run_config, params=HPARAMS)    # Create a graph regularization config.  graph_reg_config = nsl.configs.make_graph_reg_config(      max_neighbors=HPARAMS.num_neighbors,      multiplier=HPARAMS.graph_regularization_multiplier,      distance_type=HPARAMS.distance_type,      sum_over_axis=-1)    # Invoke the Graph Regularization Estimator wrapper to incorporate  # graph-based regularization for training.  graph_nsl_estimator = nsl.estimator.add_graph_regularization(      estimator,      embedding_fn,      optimizer_fn=optimizer_fn,      graph_reg_config=graph_reg_config)
复制代码


如你所见,一旦创建了基本模型(在本例中是前馈神经网络),就可以通过调用 NSL 包装器 API 将其直接转换为图正则化模型。


就是这样!我们现在已经有了在 TFX 中构建图正则化 NSL 模型所需的所有缺失部分。这里提供了一个基于 CoLab 的教程,它在 TFX 中演示了这个端到端的示例。你可以自由地尝试并根据你的需要进行定制。

对抗性学习


正如前面的引言中所提到的,神经结构化学习的另一个方面是对抗性学习,它不是使用图的显式邻居来进行正则化,而是动态地和对抗性地创建隐式邻居来混淆模型。因此,使用对抗性示例进行规则化处理是提高模型健壮性的有效途径。使用 NSL 的对抗性学习可以很容易地集成到 TFX 管道中。它无需任何自定义组件,只需更新 Trainer 组件来调用 NSL 中的对抗性正则化包装器 API 即可。

总结


我们已经演示了如何使用自定义组件在 TFX 中使用 NSL 构建图形正则化模型。当然,也可以使用其他方式来构建图,以及以不同的方式构造整个管道,我们希望这个示例为你自己的 NSL 工作流提供一个基础。

相关链接


有关 NSL 的更多信息,请参阅以下资源:



作者介绍:


Arjun Gopalan,Google Research 软件工程师。


原文链接:


https://blog.tensorflow.org/2020/10/neural-structured-learning-in-tfx.html


2020-12-19 08:001730

评论

发布
暂无评论
发现更多内容

测试开发之系统篇-安装KVM虚拟机

禅道项目管理

虚拟机 测试开发

开跑!Mobileye自动驾驶汽车路测落地纽约

E科讯

腾讯T3大牛手把手教你!三面腾讯,已拿offer

欢喜学安卓

android 程序员 面试 移动开发

详解API Gateway流控实现,揭开ROMA平台高性能秒级流控的技术细节

华为云开发者联盟

华为 ROMA 集成平台 ROMA Connect API Gateway

抖音快手seo获客系统开发(可贴牌)

获客I3O6O643Z97

抖音霸屏

校友资料登记平台小程序开发笔记一-系统整体设计

CC同学

校友登记小程序 校友资料小程序

ZooKeeper 分布式锁 Curator 源码 04:分布式信号量和互斥锁

程序员小航

Java zookeeper 源码 分布式锁 zookeeper分布式锁

week 9 作业

Geek_2e7dd7

架构实战营

经典好文!BAT大厂Android面试真题锦集干货整理

欢喜学安卓

android 程序员 面试 移动开发

一周信创舆情观察(7.12~7.18)

统小信uos

手写Spring框架,是时候撸个AOP与Bean生命周期融合了!

小傅哥

Java spring 小傅哥 aop 代理

在线时间加减计算器

入门小站

工具

Rust从0到1-面向对象编程-设计模式

rust 设计模式 面向对象编程 状态模式 state pattern

WorkPlus高端制造业数字化解决方案—航天科工

BeeWorks

开源 移动 解决方案 即时通讯 私有云

校友资料登记平台小程序开发笔记二-云数据库设计

CC同学

校友录小程序 校友资料小程序

Discourse 的标签(Tag)只能是小写的原因

HoneyMoose

Vue进阶(五十七):ES数组操作:find(), findIndex(), filter(), forEach(), some(), every(), map(), reduce()

No Silver Bullet

Vue ES 7月日更 数组操作

Vue进阶(五十八):ES字符串操作:遍历、比较、截取、补全...

No Silver Bullet

Vue ES 字符串 7月日更

去中心化薄饼交易所开发|PancakeSwap去中心化交易所搭建方案

Geek_23f0c3

交易所开发 去中心化交易所系统开发 PancakeSwap交易所

王者荣耀商城异地多活架构设计

chenmin

密码学系列之:Merkle–Damgård结构和长度延展攻击

程序那些事

加密解密 密码学 程序那些事

作为Android开发程序员,已获千赞

欢喜学安卓

android 程序员 面试 移动开发

WorkPlus高端制造业数字化解决方案—长江存储

BeeWorks

开源 企业 解决方案 即时通讯 私有云

Spark 开源新特性:Catalyst 优化流程裁剪

华为云开发者联盟

sql spark 开源 Catalyst 优化器

Python OpenCV 图像的 最近邻插值 与 双线性插值算法 优化迭代

梦想橡皮擦

Python 7月日更

价值连城 知名深度强化学习Pieter Abbeel的采访 John 易筋 ARTS 打卡 Week 56

John(易筋)

ARTS 打卡计划

EasyRecovery软件帮你快速恢复图片数据

淋雨

EasyRecovery 文件恢复 硬盘数据恢复

看焱融云CSI动态感知如何扩展Kubernetes Scheduler

焱融科技

云计算 技术 云原生 高性能 分布式存储

带你了解WDR-GaussDB(DWS) 的性能监测报告

华为云开发者联盟

数据库 数据 GaussDB(DWS) WDR 负荷诊断报告

Linux之date命令

入门小站

Linux

携手生态伙伴亮相InfoComm,英特尔赋能智能协作办公

E科讯

如何使用 TFX 中的 NSL 框架实现图的正则化?_AI&大模型_Arjun Gopalan_InfoQ精选文章