写点什么

新的 Dataproc 可选组件支持 Apache Flink 和 Docker

Roderick Yao

  • 2020-11-03
  • 本文字数:2445 字

    阅读完需:约 8 分钟

新的 Dataproc 可选组件支持 Apache Flink 和 Docker

Google Cloud 的 Dataproc 让您能够以更简便、更经济的方式来基于 Google Cloud 运行原生 Apache Spark 和 Hadoop 集群。在本文中,我们将介绍在 Dataproc 的 Component Exchange 中提供的最新可选组件:Docker 和 Apache Flink。

Dataproc 中的 Docker 容器

Docker 是一种广泛使用的容器技术。由于它现在是 Dataproc 可选组件,Docker 守护进程 (daemon) 现在可被安装到 Dataproc 集群的每个节点。这将使您能够安装容器化应用程序,并且在集群中轻松地与 Hadoop 集群交互。


此外,Docker 对于支持以下这些功能也至关重要:


1.通过 YARN 运行容器


2.可移植 Apache Beam 作业


在 YARN 中运行容器使您能够单独管理您的 YARN 应用程序的依赖性,并且允许您在 YARN 中创建容器化的服务。可移植 Apache Beam 将作业打包到 Docker 容器,并将其提交至 Flink 集群。了解有关 Beam 可移植性的更多信息


除了默认的 Docker registry,还可对 Docker 可选组件进行配置以使用 Google Container Registry。这使您能够使用由您的组织管理的容器镜像。


以下是利用 Docker 可选组件创建 Dataproc 集群的示例:


gcloud beta dataproc clusters create <cluster-name> \  --optional-components=DOCKER \  --image-version=1.5
复制代码


当您运行 Docker 应用程序时,使用 gcplogs 驱动程序,日志将被传至 Cloud Logging。


如果您的应用程序不依赖任何 Hadoop 服务,核实 Kubernetes 和 Google Kubernetes Engine 是否以原生方式运行容器。要了解有关 Dataproc 使用的更多信息,请参阅我们的相关文档

基于 Dataproc 的 Apache Flink

在流分析技术中,Apache Beam 和 Apache Flink 更加出色。Apache Flink 是一个基于有状态计算的分布式处理引擎。Apache Beam 是定义批处理和流处理管道的统一模式。使用 Apache Flink 作为扩展引擎,除了 Google 的 Cloud Dataflow 服务,您还可以在 Dataproc 中运行 Apache Beam 作业。


Flink 以及在 Flink 中运行 Beam 适合大规模连续作业,可提供:


  • 支持批处理和数据流程序的流优先运行环境

  • 同时支持非常高的吞吐量和低事件延迟的运行环境

  • 具有精确单次处理保证的容错

  • 流程序中的自然背压 (back-pressure)

  • 自定义内存管理以实现在内存和核外数据处理算法之间高效、稳健的切换

  • 与 YARN 以及 Apache Hadoop 生态系统的其他组件集成


Google Cloud 的 Dataproc 团队最近宣布 Flink Operator on Kubernetes 现已可用。它允许您在 Kubernetes 中运行 Apache Flink 作业,具有减少平台依赖性和产生更好的硬件效率的优势。


基本 Flink 概念


Flink 集群包括 Flink JobManager 以及一组 Flink TaskManager。与 YARN 之类的其他分布式系统中的类似角色相似,JobManager 的“责任”包括接受作业、管理资源以及监控作业等。TaskManager 负责运行实际任务。


在 Dataproc 中运行 Flink 作业时,我们将 YARN 用作 Flink 的资源管理器。您可以以两种方式运行 Flink 作业:作业集群和会话集群。对于作业集群,YARN 将为作业创建 JobManager 和 TaskManagers,并且将在作业完成时销毁集群。对于会话集群,YARN 将创建 JobManager 和几个 TaskManager。集群可服务多个作业直至被用户关闭。


如何利用 Flink 创建集群


使用以下命令作为开始:


gcloud beta dataproc clusters create <cluster-name> \  --optional-components=FLINK \  --image-version=1.5
复制代码


如何运行 Flink 作业


在带有 Flink 的 Dataproc 集群启动后,您可以使用 Flink 作业集群直接将您的 Flink 作业提交至 YARN。接受作业后,Flink 将在 YARN 中为此作业启动 JobManager 和任务槽。Flink 作业将在 YARN 集群中运行,直至完成。然后,将关闭所创建的 JobManager。作业日志将在常规 YARN 日志中提供。尝试此命令以运行一个字数统计示例:


  HADOOP_CLASSPATH=`hadoop classpath` flink run -m yarn-cluster /usr/lib/flink/examples/batch/WordCount.jar
复制代码


默认情况下,Dataproc 集群将不启动 Flink 会话集群。相反,Dataproc 将创建脚本“/usr/bin/flink-yarn-daemon”,该脚本将启动 Flink 会话。


如果您要在 Dataproc 创建时启动 Flink 会话,使用 metadata 关键词来允许启动:


  gcloud dataproc clusters create <cluster-name> \  --optional-components=FLINK \   --image-version=1.5 \  --metadata flink-start-yarn-session=true
复制代码


如果您要在 Dataproc 创建后启动 Flink 会话,可在主节点运行下列命令:


  $ . /usr/bin/flink-yarn-daemon
复制代码


向该会话集群提交作业。您需要获得 Flink JobManager URL:


  HADOOP_CLASSPATH=`hadoop classpath` flink run -m <JOB_MANAGER_HOSTNAME>:<REST_API_PORT> /usr/lib/flink/examples/batch/WordCount.jar
复制代码


如何运行 Java Beam 作业


运行以 Java 编写的 Apache Beam 作业非常简单。无需额外的配置。只要您将 Beam 作业打包为 JAR 文件,不需要进行任何配置即可在 Flink 中运行 Beam。以下是您可以使用的命令:


 $ mvn package -Pflink-runner$ bin/flink run -c org.apache.beam.examples.WordCount /path/to/your.jar--runner=FlinkRunner --other-parameters
复制代码


如何运行以 Python 编写的 Python Beam 作业


以 Python 编写的 Beam 作业使用不同的执行模式。要基于 Dataproc 在 Flink 中运行它们,您还需要启用 Docker 可选组件。以下是创建集群的示例:


  gcloud dataproc clusters create <cluster-name> \  --optional-components=FLINK,DOCKER
复制代码


您还需要安装 Beam 所必需的 Python 库,例如,apache_beam 和 apache_beam[gcp]。您可以传递一个 Flink 主 URL,让它在会话集群中运行。如果您未传递 URL,需要使用作业集群模式来运行此作业:


  import apache_beam as beamfrom apache_beam.options.pipeline_options import PipelineOptionsoptions = PipelineOptions([  "--runner=FlinkRunner",  "--flink_version=1.9",  "--flink_master=localhost:8081",  "--environment_type=DOCKER"])with beam.Pipeline(options=options) as p:  ...
复制代码


编写 Python 作业后,只需运行它以提交:


  $ python wordcount.py
复制代码


2020-11-03 14:10887

评论

发布
暂无评论
发现更多内容

美团二面:为什么Redis会有哨兵?

Java全栈架构师

Java redis 程序员 面试 后端

告别缺电焦虑!充电桩装上“智慧大脑”

天翼云开发者社区

云主机 云平台

大数据ZooKeeper(一):基本知识和集群搭建

Lansonli

大数据 zookeeper 7月月更

KunlunBase 指导手册(一)快速安装手册

KunlunBase昆仑数据库

国产数据库

KunlunBase指导手册(三)数据导入&同步

KunlunBase昆仑数据库

国产数据库

KunlunBase对MySQL私有DML语法的支持

KunlunBase昆仑数据库

国产数据库

为安全而生!云安全漫谈开讲啦

云安全 云计算运维

2022数十位Java架构师汇总产出,最新25个技术栈“Java面经”

程序知音

Java 程序员 面试 后端 八股文

KunlunBase 0.9.1版本Sysbench性能测试报告

KunlunBase昆仑数据库

国产数据库

阿里内网GC面试小册,仅7天Github获赞96.9K

程序知音

Java 阿里巴巴 程序员 后端 JVM

天翼云携手华为,强强联合,共创数据存储新生态

天翼云开发者社区

存储 数字化

【容器篇】Docker实现资源隔离的秘籍

技术小生

Docker 7月月更

A tour of gRPC:04 - gRPC unary call 一元调用

BUG侦探

gRPC RPC protocolBuffer

KunlunBase功能之insert/update/delete...returning语句

KunlunBase昆仑数据库

国产数据库

拔掉网线几秒,再插回去,原本的 TCP 连接还存在吗?

程序员小毕

程序员 程序人生 计算机网络 java面试 TCP协议

小数据量用户场景使用KunlunBase的价值

KunlunBase昆仑数据库

商品管理功能越来越丰富,不愧是 Pro 系统!

CRMEB

SVN 修订版本关键字

攻城狮杰森

svn 关键字 7月月更

KunlunBase指导手册(四)从 Oracle 实时同步数据到 KunlunBase

KunlunBase昆仑数据库

国产数据库

KunlunBase的Fullsync高可用机制简介

KunlunBase昆仑数据库

国产数据库

昆仑数据库 MySQL 连接协议简介

KunlunBase昆仑数据库

国产数据库

KunlunBase 读写分离方案

KunlunBase昆仑数据库

腾讯一面:内存满了,会发生什么?

程序员小毕

程序员 腾讯 面试 程序人生 计算机

ORACLE进阶(十四)转义字符讲解

No Silver Bullet

oracle delete 转义字符 7月月更 TRUNCATE

面试官:Linux操作系统里一个进程最多可以创建多少个线程?

Java全栈架构师

程序员 多线程 操作系统 计算机 java面试

KunlunBase指导手册(二)对等部署最佳实践

KunlunBase昆仑数据库

国产数据库

心寄开源,合规护航!2022 开放原子全球开源峰会开源合规分论坛即将开幕

kk-OSC

开源 开源峰会 开放原子全球开源峰会 开源合规

Kunlun-Storage vs PostgreSQL OLTP 测试

KunlunBase昆仑数据库

国产数据库

什么是“企业级”低代码?成为企业级低代码必须具备的5种能力

优秀

低代码 企业级低代码平台

火眼金睛,天翼云助力打造城市视觉中枢

天翼云开发者社区

大数据 云平台

数据也能进超市

天翼云开发者社区

云计算 大数据 云平台

新的 Dataproc 可选组件支持 Apache Flink 和 Docker_文化 & 方法_InfoQ精选文章