写点什么

下一个 AI 寒冬很快又会来临?

  • 2022-06-17
  • 本文字数:1979 字

    阅读完需:约 6 分钟

下一个AI寒冬很快又会来临?

本文最初发布于博客 CodeX,经 InfoQ 翻译。


AI 寒冬这个词并不是我为了吸引你阅读这篇文章而编造的,实际上,这是 AI 行业的一个知名词汇。其原因是我们在 20 世纪已经经历了两次人工智能寒冬。

什么是 AI 寒冬?

AI 寒冬与雪无关,也与季节无关。它是关于科研资金、创业资金和对人工智能的普遍兴趣的倒退。造成这种倒退的原因是,人们意识到许多希望和承诺无法实现,或者换句话说:人工智能被过度夸大了。


当然,人工智能很吸引人,而且有很多东西有待发现,但如果你认为可以在短时间内轻易实现巨大的科学飞跃,那就太天真了。有时,甚至是简单问题(如知识表示或逻辑推理)的巨大难度也被严重低估了。


就这个领域来说,人工智能这个名字可能并不那么慷慨,因为它导致了人们对人工智能寄予厚望和产生误解,比如说人工智能将在未来几十年内取代许多工作。尽管目前研究的重点不是 AGI(通用人工智能),而是狭义的人工智能,但许多人在想到人工智能时,脑子里仍然会浮现某种终结者或超级智能机器人的形象。这就导致了炒作。



Gartner 的炒作周期


这与 Gartner 的“炒作周期”有很强的相关性,它旨在说明一项新技术一开始会引发不切实际的期望,进而导致对这项技术的大量研究和调查。在意识到这是幻想之后,研究和大众兴趣急剧下降。至此,该项技术才得以通过缓慢但稳定的改进取得真正的进展。


这与人工智能非常相似,只是我们没有“复苏期(Slope of Enlightenment)”这个状态,还没有真正取得稳定的改进。

过去的 AI 寒冬


AI 寒冬时间线


第一次人工智能热发生在 20 世纪 50 年代,这也被称为推理和原型人工智能的时代。但很快,在 1970 年代,一个长达十年的人工智能寒冬开始了。


20 世纪 80 年代出现了新的人工智能热。当时,严重依赖知识表示的专家系统出现,试图重现人类决策过程。但那些成果并不能满足人们的期望,因为知识表示只适用于少数领域,而且由于缺乏数据和计算能力,其他算法并不可行。


下一个人工智能寒冬来了,并持续了一段时间,直到数据量和计算能力几乎呈指数级增长,提供了实施深度学习的可能性。这就是我们现在的情况,很可能是这种模式的重现。

为什么很快又会来临?


这就好比是泡沫破裂。每当某样东西的价值被人为地高估时,一旦普遍的误解转变为人所共知的常识,泡沫就很有可能破灭。



深度神经网络


现在的高性能人工智能,主要是深度神经网络,被认为是黑盒模型,它执行大量的浮点数计算来预测 X,或 Y,或其他东西。这些模型可以非常准确,因为它们是通用多项式函数近似器,有成百上千的神经元随着时间的推移抽象出函数。每当你问自己这样的模型是如何得出结论的时候,能够得出模型推理过程的方法非常有限,因为人无法解释通过无数神经元的浮点数流。这就是为什么这些模型在推理和知识表示研究领域没有取得进展的原因。长远来看,这非常令人担忧,因为我们需要模型有理解力,而不仅仅是进行“愚蠢的”模式检测。


例如,一个在图像中检测狗的神经网络可能会预测图像中存在一只狗,但它并没有真正理解什么是狗,以及除了视觉模式之外它还能做什么。


你可能会认为,一个能够对图像中的狗和猫进行分类的神经网络也能轻易地对图像中的鸟进行分类。但问题是,如果不重新学习它已经学到的所有知识,并在此基础上加入鸟类,人工智能就根本无法对鸟类或其他动物进行分类。这显然可以得出一个结论,推理和知识表示对于发现某种关联非常重要。举例来说,每当人类想到狗的时候,我们的脑子里可能会浮现这个词的拼写,以及狗的样子,还有一些狗的名字,等等。


联想记忆之所以重要,是因为需要有多任务模型(这是迈向 AGI 的第一步),它能够做不止一件事。人工智能不只是对图像中的动物进行分类,还可以对句子中的动物进行推理。它应该明白,“狗”这个词和狗的实际形象紧密相关,并且是指同一个东西。

小结


因为现如今几乎所有的人工智能研究都发生在深度学习领域,设法不断提升神经网络的性能或鲁棒性,所以大的问题并没有得到解决。如果不向基于推理的人工智能范式转变,那么下一个人工智能寒冬将很快到来。

一个乐观的观点


尽管目前人工智能面临着许多困难,但希望仍在。一个可能将深度学习和推理相结合的研究领域是逻辑神经网络,它试图将神经元映射到由 AND、OR 等运算符组成的逻辑谓词上......其前景是,神经网络将不再是黑盒子,知识表示可以更容易地转移到其他模型。



公平地说,到今天为止,这种方法还不是很有效,因为在映射神经元状态以获得逻辑谓词时,许多信息会丢失。人们希望能够找到解决此类问题的方法,使人工智能的梦想成为现实。


查看英文原文:


https://medium.com/codex/ai-winter-is-coming-2527e333df38?accessToken=eyJhbGciOiJIUzI1NiIsImtpZCI6ImRlZmF1bHQiLCJ0eXAiOiJKV1QifQ.eyJhdWQiOiJhY2Nlc3NfcmVzb3VyY2UiLCJleHAiOjE2NTU0NTc4MTksImZpbGVHVUlEIjoiV3IzRFZ5YVlQbGZZSjFrSiIsImlhdCI6MTY1NTQ1NzUxOSwidXNlcklkIjoyMDQxOTA5MH0.qdAPgdgTEXxuN0EPTjE_1sLAFNTVlzEwkmeYDoSis3I

2022-06-17 18:073242
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 559.8 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

围观|第一代云原生企业米哈游如何让想象发生?

阿里巴巴云原生

阿里云 最佳实践 运维 云原生 游戏开发

详解Spring5+SpringMVC5+MyBatis3.X,同时整合Redis缓存+ActiveMQ+项目等

Java架构追梦

Java spring 架构 mybatis springmvc

盘点2020 | 干饭人 cxuan 活下来了

苹果看辽宁体育

学习 总结 盘点2020

第九周-作业一

ray-arch

DeFi平台DAPP软件系统开发

系统开发

JVM 垃圾回收原理

梧桐

第九周总结

小兵

快手基于 Apache Flink 的优化实践

Apache Flink

flink

Code Shared & Review(20201214-20201220)

刘璐

盘点2020|从写程序到写文章,一个宅男程序猿到平台写手的心路历程

罗小龙

程序猿 盘点2020 心路历程 宅男 平台写手

一文搞懂 CountDownLatch 用法和源码!

苹果看辽宁体育

Java 源码 并发

MySQL修改账号密码方法大全

Simon

MySQL 七日更

vivo 微服务 API 网关架构实践

vivo互联网技术

微服务 API网关 Zuul2

11 组关系带你看清 JVM 全貌

田维常

JVM

点个外卖,我把「软中断」搞懂了

小林coding

Linux 操作系统

ETHERZ流动性挖矿系统软件APP开发

系统开发

为什么你成为不了团队核心成员

数据社

团队 七日更

《面试官不讲武德》对Java初级程序猿死命摩擦Http协议

Silently9527

面试 https HTTP 图解https

工作3年,看啥资料能月薪30K?

小傅哥

Java 面试 小傅哥 七日更 技术成长

蚂蚁集团下架互联网存款产品:互联网金融是天使还是魔鬼

石头IT视角

阿里 10 年:一个普通技术人的成长之路

阿里巴巴云原生

阿里云 云原生 技术人 自我思考 职场成长

测开之函数进阶· 第1篇《递归函数》

清菡软件测试

测试开发

Java并发编程:AQS的原子性如何保证

李尚智

Java java 并发

4. 上新了Spring,全新一代类型转换机制

YourBatman

Spring Framework 类型转换 Converter

业务重要?还是技术重要?

数据社

思考 团队 七日更

UBI波场挖矿系统软件APP开发

系统开发

IoT数据模型设计

soolaugust

物联网 IoT 数据模型 工业物联网 七日更

LeetCode题解:92. 反转链表 II,递归,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

Linux 如何实现定时调度任务

Near

Linux Timer 定时调度

Synchronized用法原理和锁优化升级过程(面试)

叫练

synchronized 轻量级锁 偏向锁 多线程与高并发 同步

数据结构与算法经典问题解析-Java语言描述

田维常

数据结构

下一个AI寒冬很快又会来临?_AI&大模型_Stefan Haas_InfoQ精选文章