写点什么

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

  • 2020-09-22
  • 本文字数:2195 字

    阅读完需:约 7 分钟

在 FIFA 20 将技能相似球员进行分组(2):层次聚类

理解层次聚类

  • 与 K-均值聚类算法(K-means)不同,不需要指定聚类的数量。

  • 结果汇总在树状图,树状图可以方便地解释数据和选择任何数量的聚类。

基本思路

  • 专注 :自下而上(又称凝聚聚类(Agglomerative clustering))

  • 从单个观察开始(又称 叶子 )开始,作为聚类。

  • 通过将叶子合并成 树枝 向上移动。

  • 将树枝与其他叶子或树枝合并。

  • 最终,当所有的东西都合并到一个聚类时,到达顶端。



树状图示例。

解释树状图

  • 在适当的高度上进行切割,以获得所需聚类的 #。

  • 垂直轴:相异度度量(或距离)——两个聚类合并的高度。

  • 高度表示聚类的相似性。

  • 较低的高度更相似

  • 水平轴并不表示相似性。

  • 交换左右分支并不影响树状图的意义。

它如何衡量聚类之间的差异?

  1. 基于度量(最常见的是曼哈顿距离(Manhattan distance)或欧几里得距离(Euclidean distance,亦称欧氏距离))。

  2. 最长距离法(Complete linkage)(即最远邻法(furthest-neighbor))

  3. 最短距离法(Single linkage)(即最近邻法(nearest-neighbor))

  4. 平均距离法(Average linkage)

  5. 质心距离法(Centroid linkage)

  6. 2, 基于相关性的距离

  7. 查找观测值之间的相关性。

层次聚类的缺点

  1. 计算成本高——不适用于大数据集。

  2. ,而表示 K-均值。

  3. 对噪声和离群值敏感。

使用层次聚类对 FIFA20 的球员进行分组

数据清理/预处理(第一部分中的代码)

import pandas as pdimport numpy as npdf = pd.read_csv("/content/players_20.csv")df = df[['short_name','age', 'height_cm', 'weight_kg', 'overall', 'potential','value_eur', 'wage_eur', 'international_reputation', 'weak_foot','skill_moves', 'release_clause_eur', 'team_jersey_number','contract_valid_until', 'nation_jersey_number', 'pace', 'shooting','passing', 'dribbling', 'defending', 'physic', 'gk_diving','gk_handling', 'gk_kicking', 'gk_reflexes', 'gk_speed','gk_positioning', 'attacking_crossing', 'attacking_finishing','attacking_heading_accuracy', 'attacking_short_passing','attacking_volleys', 'skill_dribbling', 'skill_curve','skill_fk_accuracy', 'skill_long_passing', 'skill_ball_control','movement_acceleration', 'movement_sprint_speed', 'movement_agility','movement_reactions', 'movement_balance', 'power_shot_power','power_jumping', 'power_stamina', 'power_strength', 'power_long_shots','mentality_aggression', 'mentality_interceptions','mentality_positioning', 'mentality_vision', 'mentality_penalties','mentality_composure', 'defending_marking', 'defending_standing_tackle','defending_sliding_tackle','goalkeeping_diving','goalkeeping_handling', 'goalkeeping_kicking','goalkeeping_positioning', 'goalkeeping_reflexes']]df = df[df.overall > 86] # extracting players with overall above 86df = df.fillna(df.mean())names = df.short_name.tolist() # saving names for laterdf = df.drop(['short_name'], axis = 1) # drop the short_name columndf.head()
复制代码

标准化数据

from sklearn import preprocessingx = df.values # numpy arrayscaler = preprocessing.MinMaxScaler()x_scaled = scaler.fit_transform(x)X_norm = pd.DataFrame(x_scaled)
复制代码

基于平均距离法的层次聚类

import matplotlib.pyplot as pltimport scipy.cluster.hierarchy as sch# plot dendrogram using average linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Average Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="average"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 分成两组:守门员和其他人

最短距离法

# plot dendrogram using single linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Single Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="single"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



分为守门员和其他人

质心距离法

# plot dendrogram using centroid linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Centroid Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="centroid"), labels= names, leaf_font_size = 13, orientation='right')
复制代码



  • 再次分成守门员和其他人。

最长距离法

# plot dendrogram using complete linkageplt.figure(figsize=(10,14))plt.title('Hierarchical Clustering Dendrogram with Complete Linkage')dendrogram = sch.dendrogram(sch.linkage(X_norm, method="complete"), labels= names, leaf_font_size = 13, orientation='right')
复制代码


结论

最长距离法似乎是将球员进行最准确地分组的方法!


感谢阅读本文,希望对你有所启迪。


本文的 GitHub 仓库:https://github.com/importdata/Clustering-FIFA-20-Players


作者介绍


Jaemin Lee,Jaemin Lee,专攻数据分析与数据科学,数据科学应届毕业生。


原文链接


https://towardsdatascience.com/grouping-soccer-players-with-similar-skillsets-in-fifa-20-part-2-hierarchical-clustering-839705f6d37d?source=---------0-----------------------


2020-09-22 10:031399

评论

发布
暂无评论
发现更多内容

Kotlin-+-协程-+-Retrofit-,记录一次腾讯Android岗面试笔试总结

android 程序员 移动开发

手把手教你,从零开始搭建Spring Cloud Alibaba!这份笔记太牛了

Java 编程 程序员 SpringCloud

记一次“U盘拔出”后重要文件丢失的恢复之旅

淋雨

EasyRecovery

Kotlin学习手记——构造器,【深夜思考】

android 程序员 移动开发

LayoutManager高端玩家,实现花式表格(1),安卓面试题高级

android 程序员 移动开发

kotlin 实战之委托总结,成为一名合格Android架构师

android 程序员 移动开发

金九银十,我把阿里+字节+滴滴+美团+腾讯等Java岗位面试题用12万字总结出来了

Sakura

Java 编程 程序员 架构 面试

Kotlin协程到底是怎么切换线程的?你是否知晓?(1),kotlin开源项目实战

android 程序员 移动开发

Kotlin学习手记——协程进阶,嵌入式android开发教程

android 程序员 移动开发

LayoutManager高端玩家,实现花式表格,kotlin中文

android 程序员 移动开发

Kotlin协程到底是怎么切换线程的?你是否知晓?,写得太好了

android 程序员 移动开发

Kotlin-新版来了,支持跨平台!,android视频开发面试

android 程序员 移动开发

Kotlin修炼指南(三),如何在Android-Studio下进行NDK开发

android 程序员 移动开发

FinClip通过中国信通院SDK安全专项测试

FinClip

Kotlin协程,flutterplugin打包aar

android 程序员 移动开发

LeakCanary核心源码解析,android开发从入门到精通素材

android 程序员 移动开发

面试题:软件测试的流程

程序员阿沐

互联网 软件测试 计算机 测试工程师 测试流程

Kotlin-基础---数据类型,android项目开发实战入门光盘文件

android 程序员 移动开发

又一巅峰神作!14年工作经验大佬出品“JVM&G1 GC深入学习手册”

Java 编程 程序员 JVM GC

未来怎么样的测试工程师最值钱?

程序员阿沐

软件测试 软件工程师 自动化测试 测试开发 测试工程师

Vue进阶(幺陆叁):vue项目启动后自动打开页面并设置默认浏览器

No Silver Bullet

Vue 11月日更

LeetCode,牛客面试必刷,看了这些,flutter面试

android 程序员 移动开发

Spring Boot+Vue实现汽车租赁系统(毕设)

偶尔善良

MySQL redis Spring Boot Vue

LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜

android 程序员 移动开发

软件测试需要具备的技能(软技能硬技能)

程序员阿沐

编程 程序员 软件测试 教程 测试工程师

Kotlin-风险高、RxJava-不老,Android-原生开发现状分析(1)

android 程序员 移动开发

Kotlin-风险高、RxJava-不老,Android-原生开发现状分析

android 程序员 移动开发

Kotlin学习手记——基本类型,安卓开发kotlin推荐书籍

android 程序员 移动开发

Kotlin的自定义View,实现带弧形的进度条,软件开发项目经理面试题

android 程序员 移动开发

lambda表达式(4)(Shawn),开发android

android 程序员 移动开发

就这?腾讯云高工熬夜手写'Java微服务学习笔记'也就让我月薪涨3k

Java spring 程序员 面试

在 FIFA 20 将技能相似球员进行分组(2):层次聚类_AI&大模型_Jaemin Lee_InfoQ精选文章