50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

斯坦福开源 Python 库 StanfordNLP,可处理 53 种人类语言

  • 2019-03-18
  • 本文字数:2829 字

    阅读完需:约 9 分钟

斯坦福开源Python库StanfordNLP,可处理53种人类语言

近期,斯坦福大学自然语言处理小组开发了一个 Python 库 StanfordNLP,用于解决许多常见的自然语言处理问题,可以处理多达 53 种人类语言模型,便于数据科学家和 Python 开发人员使用。

语言

StanfordNLP 提供了针对53种人类语言的预训练的深度学习模型,并使用PyTorch作为其机器学习的入门。


每种语言都有一个treebank,它是一个巨大的文本数据集,为语法结构/语义内容进行了可靠的注释。对于某些语言,库中提供了不只一个 treebank。


如果你想要拥有自己的带注释的语料库(这种情况并不常见!),那么你可以基于语料库训练一个新的模型。



解析这句话!

范围

这个库提供下列服务:


  • 将给定的文本分成句子和单词(符号化)。符号化是指将一个文本(“The day of the groundhog attracts attention”)转换成七个单词的序列(“The”,“day”,“of”,“The”,“groundhog”,“caught”,“attention”)。

  • 为给定的单词指定一个基本形式(词形归并)。词形归并工具会将“attraction”、“attractive”和“attractive”与同一个词形(例如“attract”)联系起来。

  • 在一个句子中,把单词和词性联系起来。所以“day”是名词,“attract”是动词。

  • 单词有形态特征,如单数或现在进行时。这个库也会提供帮助。

  • 它还可以产生句子的句法结构。

  • 最后,StanfordNLP 可以与名气更大、应用范围更广泛的 Stanford CoreNLP 进行整合。


在这篇文章中,我们将探讨符号化、词性和形态学特征。



StanfordNLP 管道

管道

Vish (Ishaya) Abrams 在文章中很好地解释了机器学习中的管道。为了这个目的,我们可以将库看作是一组组件的序列,这些组件的执行方式是,一个组件的输出是另一个组件的输入(一部分)。这种设计允许替换管道中的一个专用组件,同时保留其余组件。


考虑到文本在管道中流动,那么文本会经过不同步骤的处理。


在 StanfordNLP 中,管道与语言和 treebank 相关联。详细信息请看这里(https://stanfordnlp.github.io/stanfordnlp/pipeline.html),但你现在还不需要它们。StanfordNLP 管道用于模型评估,而不是模型训练。

安装

在进行其他步骤之前,我们需要先安装这个库。Python 3.6 或之后的版本可用。正如开发人员所解释的,安装 StanfordNLP 最简单的方法是使用 pip:


pip install stanfordnlp


之后,下载我们想要使用的语言,例如:


import stanfordnlp

#You only download languages once

#Each language requires more that 1GB of disk space

#It takes time… have a coffee!

stanfordnlp.download(‘en’)

stanfordnlp.download(‘es’)

stanfordnlp.download(‘fr’)


接下来是在哪里存储下载的语言包。这一步我们建议使用缺省值。下载完成后,你可以检查每种语言都有一个对应的文件夹,其中保存了许多 PyTorch 模型,这些模型将用于我们将要介绍的各种 NLP 任务。

词性标注及其有用的原因

词性标注是复杂的 NLP 活动中的一项基本任务。想一下文本分类、情感分析或信息索引和检索。建立文本的基本语法结构为进一步的文本处理奠定了基础。

解析和标记一个句子

我们以下面的法语为例:


Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties (René Descartes, Discourse on the method)

中文大意:如果这句话对于你来说太长了,不能一次读完,你可以把它分为六部分(雷内·笛卡尔,关于方法的言论)


但是别担心,我们会把这句话变得简短很多!让我们来分析笛卡尔的句子,评估一下每个单词在其中的作用。符号化和词性标注开始发挥作用。


import stanfordnlp# English is the default language, so you# just invoke stanfordnlp.Pipeline()# For Spanish you would call # stanfordnlp.Pipeline(lang="es", treebank="es_ancora")# This sets up a neural pipeline in Frenchnlp = stanfordnlp.Pipeline(lang="fr", treebank="fr_gsd")# a document is made of sentencesdoc = nlp("Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six parties")# we pick our first and only sentenceonly_sentence = doc.sentences[0]
# a sentence is made of words. # Each word is tagged with a part of speech (POS)# Good pythonic guys prefer list comprehensions over for loops!print(" ". join(["{} ({})".format(word.text, word.upos) for word in only_sentence.words]))
复制代码


在一些信息量丰富的消息之后,我们得到单词列表,每个单词都附在其相应的词性上:


Si (SCONJ) ce (DET) discours (NOUN) semble (VERB) trop (ADV) long (ADJ) pour (ADP) être (AUX) lu (VERB) en (ADP) une (DET) fois (NOUN) , (PUNCT) on (PRON) le (PRON) pourra (VERB) distinguer (VERB) en (ADP) six (NUM) parties (NOUN)
复制代码


以上这些可以告诉我们,six 是一个数字决定因素,而 parties 是一个名词。请注意,当 lu 被标识为动词时, être 被标记为助动词。


StanfordNLP 利用了语音集的通用部分,它的优点是适用于多种语言。但是,只要有 treebank 的支持,属性 pos 也会使用和显示语言的特定词性。其他 NLP 库(如spacy)也使用通用的和某种语言特有的语音集部分。



Chomsky 的玩笑

处理一词多义

现在我们用这个库开个小玩笑。我们想知道这个英语句子的词性:


I book the book while you stand by the stand


在同一个句子中,不仅 book 和 stand 有两种不同的含义。它们也充当动词和名词。运行这句话的类似代码,我们会得到:


I (PRON) book (VERB) the (DET) book (NOUN) while (SCONJ) you (PRON) stand (VERB) by (ADP) the (DET) stand (NOUN)
复制代码


我用这个简单的例子引起读者的注意力,它表明词性标记已经超出了在字典中查找单词,词的句法结构决定了词性。这就是伴随着库出现的学习模型在显示其作用。

形态学特征

除了通用形式和特定于语言形式的词性外,这个库中的单词分类里还带有单词的形态特征(请注意文档中可能出现的一个故障,该属性在文档中被称为 ufeats)。


我们运行以下代码:


en_nlp = stanfordnlp.Pipeline()doc = en_nlp("My taylor is drunk") only_sentence = doc.sentences[0]print(" ". join(["{} ({} - {})".format(word.text, word.upos, word.feats) for word in only_sentence.words]))
复制代码


我们得到:


My (PRON - Number=Sing|Person=1|Poss=Yes|PronType=Prs)taylor (NOUN - Number=Sing) is (AUX - Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin) drunk (ADJ - Degree=Pos)
复制代码


每个词都有自己的特点,但不只是名词和动词。要理解上述内容,可以查找此索引。例如,Degree=Pos 意味着positive,一级。注意,drunk 被定义为形容词,不是动词。

关闭

我想今天这些就够了。我们喜欢库,觉得使用它很舒服。当文档不足时,你可以查看源代码来帮助你理解。接下来,我们将完成对 StanfordNLP 提供的其他功能的理解。


更多信息:https://gitconnected.com/learn/python


原文链接:https://levelup.gitconnected.com/first-look-at-stanfordnlp-2b7d43190957


2019-03-18 17:474159
用户头像

发布了 124 篇内容, 共 49.4 次阅读, 收获喜欢 177 次。

关注

评论

发布
暂无评论
发现更多内容

当设计遇见技术—低代码开发平台设计探索

inBuilder低代码平台

设计 交互式设计

什么是智慧厕所?如何打造智慧厕所?

光明源智慧厕所

智慧厕所 智慧公厕

【FAQ】HarmonyOS SDK 闭源开放能力 —Asset Store Kit

HarmonyOS SDK

HarmonyOS

🔥🔥🔥最好用的SDK版本管理器(version-manager)

Geek_5bcc45

Java Go node.js Py Version

一定要避坑:关于微信H5分享,温馨提示你不要再踩坑了!!!

Immerse

Vue 分享 H5

适合新锐机构的教务管理系统——“校猩猩”正式上线

科技热闻

IT外包行业未来发展趋势

Ogcloud

IT外包 IT外包公司 IT外包服务 IT外包企业 IT驻场外包

你真的会写侧边栏收起动画吗?

前夕

CSS css3 前端

新兴势力展露头角? ERC-1111 协议能否开启下一个热潮

NFT Research

NFT NFT\

IT外包服务:企业数据资产化加速利器

Ogcloud

IT外包 IT外包公司 IT外包服务 IT外包企业

2024-04-03:用go语言,在一个小城市里,有 m 个房子排成一排, 你需要给每个房子涂上 n 种颜色之一(颜色编号为 1 到 n ), 有的房子去年夏天已经涂过颜色了,所以这些房子不可以被重新

福大大架构师每日一题

福大大架构师每日一题

面试官:Session和JWT有什么区别?

王磊

Java 面试题

通义灵码走进武汉大学:让 AI 编码助手激活大学生的创造力

阿里云云效

阿里云 AI 云原生 通义灵码

NineData云原生智能数据管理平台新功能发布|2024年3月版

NineData

NineData 研发流程 数据库DevOps 企业级数据库 敏感数据管理

给蚂蚁金服antv提个PR, 以为是改个错别字, 未曾想背后的原因竟如此复杂!

前夕

前端 数据可视化 bug 蚂蚁金服 antv-g2

Flink 流批一体在模型特征场景的使用

Apache Flink

大数据 flink 流批一体

OpenMLDB vs Redis 内存占用量测试报告

第四范式开发者社区

人工智能 机器学习 数据库 开源 特征

我后悔了,智慧公厕来了

光明源智慧厕所

智慧厕所 智慧公厕

Postman 请求参数传递技巧:详解 Query、Path 和 Body 的用法

Liam

Java 后端 Postman 开发工具 API

美股上市辅导合伙人苏凌丘调研万达影业 欲打造VR眼镜沉浸式影院平台

科技热闻

IT外包公司可以帮企业做哪些网络优化?

Ogcloud

IT IT外包 IT外包公司 IT外包服务 IT外包服务商

度安讲 | 首期「数据安全与隐私保护合规」技术沙龙顺利召开

百度安全

行云绽放签约湾区协同创新计划,共创数字新篇章

行云管家

云计算 数字化 湾区

我们是如何测试人工智能的(三)数据构造与性能测试篇

测试人

人工智能 软件测试

深入探索:主流低代码开发平台的应用场景及开发流程

优秀

低代码开发平台 低代码平台 低代码平台应用场景

视频创作者必备应用!三步帮你解决前置内容条件,打造专属大片!

飞桨PaddlePaddle

百度 BAIDU 百度飞桨 AI应用 飞桨星河社区

【论文速读】| MASTERKEY:大语言模型聊天机器人的自动化越狱

云起无垠

Penpad Season 2 质押突破350ETH,参与可获Scroll生态空投

西柚子

让 AI 帮你写代码,开发提效神器来了

阿里云云效

阿里云 AI 云原生

斯坦福开源Python库StanfordNLP,可处理53种人类语言_AI&大模型_Angel Salamanca_InfoQ精选文章