多任务学习在推荐算法中的应用(三)

2020 年 1 月 07 日

多任务学习在推荐算法中的应用(三)
  1. 阿里 ESM2


Conversion Rate Prediction via Post-Click Behaviour Modeling


前面已经介绍过一种基于多任务学习的 CVR 预估模型 ESMM,但对于 CVR 预估来说,ESMM 模型仍面临一定的样本稀疏问题,因为 click 到 buy 的样本非常少。但其实一个用户在购买某个商品之前往往会有一些其他的行为,比如将商品加入购物车或者心愿单。如下图所示:



文中把加购物车或者心愿单的行为称作 Deterministic Action ( DAction ),表示购买目的很明确的一类行为。而其他对购买相关性不是很大的行为称作 Other Action ( OAction )。那原来的 Impression→Click→Buy 购物过程就变为:



Impression→Click→DAction/OAction→Buy 过程。


ESM2 模型结构:



那么该模型的多个任务分别是:


❶ Y1:点击率


❷ Y2:点击到 DAction 的概率


❸ Y3:DAction 到购买的概率


❹ Y4:OAction 到购买的概率


并且从上图看出,模型共有 3 个 loss,计算过程分别是:


❶ pCTR:Impression→Click 的概率是第一个网络的输出。


❷ pCTAVR:Impression→Click→DAction 的概率,pCTAVR = Y1 * Y2,由前两个网络的输出结果相乘得到。


❸ pCTCVR:


Impression→Click→DAction/OAction→Buy 的概率,pCTCVR = CTR * CVR = Y1 * [(1 - Y2) * Y4 + Y2 * Y3],由四个网络的输出共同得到。其中 CVR=(1 - Y2) * Y4 + Y2 * Y3。是因为从点击到 DAction 和点击到 OAction 是对立事件。


随后通过三个 logloss 分别计算三部分的损失:



最终损失函数由三部分加权得到:



  1. YouTube 多目标排序系统


Recommending What Video to Watch Next: A Multitask Ranking System


本文主要解决了视频推荐场景下普遍存在的两个问题:


❶ 视频推荐中的多任务目标。比如不仅需要预测用户是否会观看外,还希望去预测用户对于视频的评分,是否会关注该视频的上传者,否会分享到社交平台等。


❷ 偏置信息。比如用户是否会点击和观看某个视频,并不一定是因为他喜欢,可能仅仅是因为它排在推荐页的最前面,这会导致训练数据产生位置偏置的问题。


模型结构:



从上图可知,整个模型需要预测两大类目标,分别是:


❶ Engagement objectives:主要预测用户是否点击和观看视频的时长。其中通过二分类模型来预测用户的点击行为,而通过回归模型来预测用户观看视频的时长。


❷ Satisfaction objectives:主要预测用户在观看视频后的反馈。其中使用二分类模型来预测用户是否会点击喜欢该视频,而通过回归模型来预测用户对于视频的评分。


模型中有两个比较重要的结构:Multi-gate Mixture-of-Experts ( MMoE ) 和消除位置偏置的 shallow tower。


MMoE 的结构为:



Shallow tower 的结构为:



通过一个 shallow tower 来预测位置偏置信息,输入的特征主要是一些和位置偏置相关的特征,输出的是关于 selection bias 的 logits 值。然后将该输出值加到子任务模型中最后 sigmoid 层前,在预测阶段,则不需要考虑 shallow tower 的结果。值得注意的是,位置偏置信息主要体现在 CTR 预估中,而预测用户观看视频是否会点击喜欢或者用户对视频的评分这些任务,是不需要加入位置偏置信息的。


  1. 知乎推荐页 Ranking 模型


上图是知乎在推荐场景下使用的多目标模型,预测的任务包括点击率、收藏率、点赞率、评论率等,共 8 个目标。可以看出知乎的做法也是底层 embedding 和 DNN 前几层权重设置成共享。损失函数可设置成这几个 task 的简单线性加权和。上线后线上性能:点击率基本不变,而其他的几个指标,比如点赞,收藏大幅提升。


  1. 美图推荐排序多任务


模型结构:


如上图,Multi-task NFwFM 模型的前几个隐层是共享的。在最后即将预估多个目标时通过全连接层进行拆分,各自学习对应任务的参数,从而专注地拟合各自任务。在线上预估时,因为模型尺寸没有变化,推理效率和线上的点击率预估模型一致。考虑到我们是在点击率任务的基础上同时优化关注转化率,融合公式上体现为优先按照点击率排序再按照曝光→关注的转化率排序。Multi-task NFwFM 已在美图秀秀社区首页 Feeds 推荐、相关推荐下滑流全量上线。首页 Feeds 点击率+1.93%,关注转化率+2.90%,相关推荐下滑流人均浏览时长+10.33%,关注转化率+9.30%。


  1. 小结


当我们在推荐场景需要同时优化多个目标时,多任务学习就可以派上用场。那反过来思考一个问题,在什么样的情况下,多任务学习会没效果呢?其实也很容易想到,当多个任务的相关性没那么强时,这些任务之间就会相互扰乱,从而影响最后的效果。


最后总结下现在多任务学习模型的主要使用方式:


❶ 底层 embedding 和 mlp 参数共享,上层演化出各个任务的分支,最后 loss 函数是各个任务的简单加权和。


❷ 通过多任务之间的关系来建模出新的 loss 函数,比如阿里的 ESSM,ESSM2。


❸ 通过 Multi-gate Mixture-of-Experts ( MMoE ) 这种特殊的多任务结构来学习出不同任务的权重,比如 YouTube 的多任务模型。


参考链接:


https://arxiv.org/pdf/1804.07931.pdf


https://www.jianshu.com/p/35f00299c059


https://arxiv.org/pdf/1805.10727.pdf


https://www.jianshu.com/p/aba30d1726ae


https://tech.meituan.com/2018/03/29/recommend-dnn.html


https://zhuanlan.zhihu.com/p/70940522


https://arxiv.org/abs/1910.07099


https://www.jianshu.com/p/c06e9ed08dd1


https://www.jianshu.com/p/2f3dbbfc16a6


https://zhuanlan.zhihu.com/p/89401911


知乎推荐页 Ranking


原文链接:


https://zhuanlan.zhihu.com/p/78762586


https://zhuanlan.zhihu.com/p/91285359


本文转载自 DataFunTalk 公众号。


原文链接:https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247496333&idx=1&sn=da03f8db68e5276cffe73e090ac271ec&chksm=fbd740e1cca0c9f76da90a713311bac81e9890c1f9fd69976705e167dd30e4135db6ea297d6b&scene=27#wechat_redirect


2020 年 1 月 07 日 09:50205

评论

发布
暂无评论
发现更多内容

这些Java8官方挖的坑,你踩过几个?

码大叔

Java 踩坑 加密 「Java 25周年」

Linux 自动化运维工具 ansible

杨仪军

Linux 运维自动化

坏的开始是成功的一半

escray

从技术到管理,我在极客时间的成长历程

邓建春

关于区块链的“去中心化”,90% 的人都搞错了

CECBC区块链专委会

CECBC 区块链技术 去中心化 专制

MySQL实战笔记-事务隔离和MVCC

shiziwen

MySQL 事务隔离级别 学习笔记

深度解读 Flink 1.11:流批一体 Hive 数仓

Apache Flink

大数据 flink 流计算 实时计算 大数据处理

【求锤得锤的故事】Redis锁从面试连环炮聊到神仙打架。

why技术

redis 分布式锁 分布式系统

[Redis] 你了解 Redis 的三种集群模式吗?

猴哥一一 cium

redis redis高可用 redis哨兵模式 群集安装

java的时间利器:joda

毛佳伟🐳

Java

深入理解JVM类加载机制

NORTH

类加载 深入理解JVM

游戏夜读 | 2020周记(5.24-5.31)

game1night

信息的表示与存储-整数的表示

引花眠

ARTS打卡 第2周

引花眠

ARTS 打卡计划

经历了新冠疫情,我们如何重塑死亡观?

lmymirror

人生 感悟 死亡观

万字长文,助你吃透Eureka服务发现机制!

攀岩飞鱼

分布式 微服务 微服务发现 Eureka

CPU的性能,编译器是这样压榨的!

GPU

算法 cpu 编译器 程序语言

匆忙的一周 ARTS第二周

困到清醒

产品经理的商业能力

夜来妖

程序人生 产品经理 商业 商业模式 商业价值

赢的境界 - 双赢思维

石云升

创业 创业心态 双赢思维

除了直接看余额,谁更有钱还能怎么比(三)

石君

零知识证明 多方计算 同态加密

【大厂面试01期】高并发场景下,如何保证缓存与数据库一致性?

NotFound9

Java MySQL 数据库 redis 后端

搞定 HTTP 协议(一):HTTP 与网络基础

零和幺

技术 前端 HTTP

啪啪,打脸了!领导说:try-catch必须放在循环体外!

王磊

Java 性能优化 性能 java编程

深入理解ContextClassLoader

NORTH

深入理解JVM ContextClassLoader

不想被下载限速,教你自建属于自己的云盘!

小傅哥

小傅哥 云服务 云盘 在线网盘

iOS 动画 - 窗景篇(一)

柯烂

ios objective-c swift 移动应用 动画

是公司养活了你,还是你养活了公司?

四猿外

生涯规划 程序员 个人成长

万恶的NPE如何避免,几种你必须知道的方案!!!

不才陈某

后端

深入理解ClassLoader

NORTH

类加载 深入理解JVM ClassLoader

深入理解JVM内存管理 - 方法区

NORTH

深入理解JVM 方法区 老年代

多任务学习在推荐算法中的应用(三)-InfoQ