AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别

  • 2020-03-22
  • 本文字数:2132 字

    阅读完需:约 7 分钟

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别

01 数据探索性分析

首先,我们对接入整个数据仓库贴源层中的所有表所有字段的敏感类型 (也就是模型的目标变量 Y)进行了统计,其中敏感类型的字段占全部字段 2% 左右,主要的敏感信息类型包括:姓名,身份证号,手机号,固定电话号,银行卡号,邮箱等。可以看出这一个样本极度不均衡的问题。


其次,我们对于所能获取到的用于判断一个字段敏感类型的信息 (也就是模型的自变量 X)统计如下:



对于上表中的原始特征,通过统计分析确定相应的数据预处理方法和参数,从而衍生出更多的特征。例如,对于数据库名称 (db_name),我们衍生出数据库名称长度 (db_name_len)特征,并对其在是否为敏感字段上的分布统计如下:



从上图中不难看出,数据库名称长度对于字段是否为敏感具有一定的区分性。从字段类型 (column_type) 角度分析,不同字段类型的敏感和非敏感字段占比如下:



最终,通过数据预处理,特征衍生等多种手段得到模型最终的输入特征。

02 Wide&Deep 网络和 TextCNN

Wide&Deep 网络

Wide & Deep 网络是由 Google 提出的一种用于推荐系统的深度神经网络模型 [2]。整个网络框架如下图所示:



模型 Wide Models 部分的输入为数值型和利用 One-Hot 编码的分类型特征,Deep Models 部分通过学习得到了分类特征的 Embedding 编码。对两部分进行合并得到最终的 Wide & Deep 网络,模型预测的条件概率为:



其中,Y 为预测标签,为 Sigmoid 函数,为原始特征的 X 的特征组合,为偏置项,为 Wide 部分的权重,为应用在 Deep 部分最后一层的权重。原文中 Wide 部分采用 FTRL 进行优化,Deep 部分采用 AdaGrad 进行优化。


敏感字段识别问题的输入中包含了大量的数值型特征和分类型特征,因此可以采用 Wide & Deep 网络进行处理。

TextCNN

TextCNN 是由 Kim 等人提出的一种利用卷积神经网络对文本进行分类的深度神经网络模型[3]。整个网络框架如下图所示:



在卷积层中,一个特征由一个窗口内的词生成:



其中, h 为窗口的大小,为词向量表示,为卷积核参数,为偏置项, k 为词向量的维度。


敏感字段识别问题的输入中包含了大量的文本特征,因此可以采用 TextCNN 网络进行处理。

03 敏感字段识别模型

对于敏感字段识别问题,从问题和数据的特点出发,对原始的 Wide & Deep 模型和 TextCNN 做出了如下改进:

Wide&Deep 网络改进

原始 Wide & Deep 网络的深度模型的输入均为分类型特征,但在敏感字段识别问题还存在大量的文本特征。考虑到 CNN 在文本分类上具有较好的效果,因此对于文本特征在通过 Embedding 层后利用 CNN 网络对其进行处理,其它的分类型特征在通过 Embedding 层后仍使用全连接网络进行处理。改进后的网络框架如下图所示:


TextCNN 改进

原始的 TextCNN 解决的是英文文本的分类问题,对于敏感字段识别问题,文本特征中存在大量的汉语信息。不同于英文,汉语没有天然的分隔符,传统的做法是采用分词技术对汉语文本进行预处理。但是这样模型的效果就会受制于分词效果的好坏,同时计算效率也会有一定的下降,因此我们选择不分词,直接采用字向量处理文本。


同时需要注意的是 CNN 会隐含地利用到文本的位置信息,因此对于不同的文本特征组合成一个定长的文本时,需先对每个文本特征进行截取和补全,再将其进行拼接得到最终的定长文本。改进后的网络框架如下图所示:


模型训练

在数据探索性分析阶段,我们指出了数据的不平衡性。因此在处理数据不平衡问题时可以采用如下两个方法:


  1. 数据的过采样和欠采样。即对较少类型的数据多采样一些,或者对于较多类型的数据少采样一些。

  2. 代价敏感学习。即在损失函数中赋予较少类型的样本更大的损失值,增加其在一批数据中的重要程度。


对于训练数据的生成,由于字段数量是有限的,但字段内容值 (column_value) 是大量的。因此我们以一个不为空的字段内容值搭配其他特征为一个训练样本。数据的划分采用常用的模式:训练集测试集划分 7:3,训练集内部训练集验证集划分 8:2。


模型训练的超参数采用常用的模式:


  • Wide 部分 Dropout 比例:0.5

  • Deep 部分 Dropout 比例:0.5

  • Concat 部分 Dropout 比例:0.5

  • Embedding 维度:128

  • 优化器: Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

  • 训练数据 Batch Size: 128

模型性能

敏感字段识别问题为一个多分类问题,训练好的模型在测试集上的整体准确率为 93% 左右。但其在一些具体类型上的效果略有欠缺,通过具体的分析定位问题在于训练数据中包含了一些标注错误的样本,例如:敏感类型为“地址”,但该字段保存的却不是地址类型的数据。

实施流程

模型的整个实施流程如下:



[1] https://en.wikipedia.org/wiki/Data_governance


[2] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T.,Aradhye, H., … Shah, H. (2016). Wide & Deep Learning for RecommenderSystems. ArXiv:1606.07792 [Cs, Stat].


[3] Kim, Y. (2014). Convolutional Neural Networks for SentenceClassification. In Proceedings of the 2014 Conference on Empirical Methods inNatural Language Processing (EMNLP) (pp. 1746–1751).


2020-03-22 21:041924

评论

发布
暂无评论
发现更多内容

阿里内部绝密Java面试笔记(珠峰版),冒着被开的风险免费分享

Java 程序员 后端

这几个动态规划的问题,面试官就爱问

华为云开发者联盟

数组 动态规划 序列 子数组 公共子串

阿里面试官:HashMap 为什么是线程不安全的?

Java 程序员 后端

道与术丨华为云数据库战略启示录

华为云开发者联盟

数据库 opengauss 华为云 GaussDB 战略

震撼发布!阿里老兵亲手操刀微服务架构实战,整理出140个案例

Java 程序员 后端

阿里五面(4轮技术+HR)成功逆袭,面经分享

Java 程序员 后端

阿里员工感慨:码农们过去暴富有多轻松,现在赚钱就有多辛苦!

Java 程序员 后端

阿里巴巴蚂蚁金服Java面试经历包含答案解析

Java 程序员 后端

阿里技术官亲手总结Part 10个知识点!主动分享!收藏必备!

Java 程序员 后端

阿里蚂蚁金服超全126道面试题,都会的话,你也能去面阿里了

Java 程序员 后端

阿里面试官:你好,谈谈对Synchronized的理解?(一

Java 程序员 后端

阿里又一个“逆天”容器框架!这本Kubernetes进阶手册简直太全了

Java 程序员 后端

阿里大师推荐的这份Java开发必读书单,让我成功在寒冬中站稳脚步

Java 程序员 后端

阿里巴巴内部涨薪必备的“王者级Dubbo实战笔记”,不啃透不下班

Java 程序员 后端

35w奖金池,腾讯云TDSQL精英挑战赛正式开赛!

科技热闻

阿里技术3面+HR面,奋战两个月,终斩获offer定级阿里P6+

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正(1)

Java 程序员 后端

Flink CDC 实时数据同步详细解析

五分钟学大数据

flink 11月日更

阿里大牛看了也要膜拜的大话代码架构(项目实战版)终于出来了

Java 程序员 后端

阿里技术总监纯手打的内部手册《MySQL笔记》真是太硬核了

Java 程序员 后端

阿里架构师剖析程序运行原理,程序是如何运行又是如何崩溃的?

Java 程序员 后端

助力数字孪生,TDengine在叁零肆零仿真平台中的实践

TDengine

数据库 tdengine 后端

阿里程序员:入职才两个月,我决定离职

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正

Java 程序员 后端

阿里面试官整理出面试必问:java面试核心知识原理+框架笔记

Java 程序员 后端

阿里面试官:就说最后一遍,有关Spring这13点我们必问!

Java 程序员 后端

阿里内部疯传的分布式架构手册,轻松吊打小日子过的不错的面试官

Java 程序员 后端

阿里亿级长连网关的云原生演进之路

Java 程序员 后端

阿里腾讯微软拥抱低代码,程序员们要“失业”?

Java 程序员 后端

阿里面试确实严格,面了整整5轮,还好我技高一筹!

Java 程序员 后端

震惊!2022 年秋招 Java 后端开发岗竟然一片红海!算法岗都不香了吗?

Java 程序员 后端

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章