2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别

  • 2020-03-22
  • 本文字数:2132 字

    阅读完需:约 7 分钟

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别

01 数据探索性分析

首先,我们对接入整个数据仓库贴源层中的所有表所有字段的敏感类型 (也就是模型的目标变量 Y)进行了统计,其中敏感类型的字段占全部字段 2% 左右,主要的敏感信息类型包括:姓名,身份证号,手机号,固定电话号,银行卡号,邮箱等。可以看出这一个样本极度不均衡的问题。


其次,我们对于所能获取到的用于判断一个字段敏感类型的信息 (也就是模型的自变量 X)统计如下:



对于上表中的原始特征,通过统计分析确定相应的数据预处理方法和参数,从而衍生出更多的特征。例如,对于数据库名称 (db_name),我们衍生出数据库名称长度 (db_name_len)特征,并对其在是否为敏感字段上的分布统计如下:



从上图中不难看出,数据库名称长度对于字段是否为敏感具有一定的区分性。从字段类型 (column_type) 角度分析,不同字段类型的敏感和非敏感字段占比如下:



最终,通过数据预处理,特征衍生等多种手段得到模型最终的输入特征。

02 Wide&Deep 网络和 TextCNN

Wide&Deep 网络

Wide & Deep 网络是由 Google 提出的一种用于推荐系统的深度神经网络模型 [2]。整个网络框架如下图所示:



模型 Wide Models 部分的输入为数值型和利用 One-Hot 编码的分类型特征,Deep Models 部分通过学习得到了分类特征的 Embedding 编码。对两部分进行合并得到最终的 Wide & Deep 网络,模型预测的条件概率为:



其中,Y 为预测标签,为 Sigmoid 函数,为原始特征的 X 的特征组合,为偏置项,为 Wide 部分的权重,为应用在 Deep 部分最后一层的权重。原文中 Wide 部分采用 FTRL 进行优化,Deep 部分采用 AdaGrad 进行优化。


敏感字段识别问题的输入中包含了大量的数值型特征和分类型特征,因此可以采用 Wide & Deep 网络进行处理。

TextCNN

TextCNN 是由 Kim 等人提出的一种利用卷积神经网络对文本进行分类的深度神经网络模型[3]。整个网络框架如下图所示:



在卷积层中,一个特征由一个窗口内的词生成:



其中, h 为窗口的大小,为词向量表示,为卷积核参数,为偏置项, k 为词向量的维度。


敏感字段识别问题的输入中包含了大量的文本特征,因此可以采用 TextCNN 网络进行处理。

03 敏感字段识别模型

对于敏感字段识别问题,从问题和数据的特点出发,对原始的 Wide & Deep 模型和 TextCNN 做出了如下改进:

Wide&Deep 网络改进

原始 Wide & Deep 网络的深度模型的输入均为分类型特征,但在敏感字段识别问题还存在大量的文本特征。考虑到 CNN 在文本分类上具有较好的效果,因此对于文本特征在通过 Embedding 层后利用 CNN 网络对其进行处理,其它的分类型特征在通过 Embedding 层后仍使用全连接网络进行处理。改进后的网络框架如下图所示:


TextCNN 改进

原始的 TextCNN 解决的是英文文本的分类问题,对于敏感字段识别问题,文本特征中存在大量的汉语信息。不同于英文,汉语没有天然的分隔符,传统的做法是采用分词技术对汉语文本进行预处理。但是这样模型的效果就会受制于分词效果的好坏,同时计算效率也会有一定的下降,因此我们选择不分词,直接采用字向量处理文本。


同时需要注意的是 CNN 会隐含地利用到文本的位置信息,因此对于不同的文本特征组合成一个定长的文本时,需先对每个文本特征进行截取和补全,再将其进行拼接得到最终的定长文本。改进后的网络框架如下图所示:


模型训练

在数据探索性分析阶段,我们指出了数据的不平衡性。因此在处理数据不平衡问题时可以采用如下两个方法:


  1. 数据的过采样和欠采样。即对较少类型的数据多采样一些,或者对于较多类型的数据少采样一些。

  2. 代价敏感学习。即在损失函数中赋予较少类型的样本更大的损失值,增加其在一批数据中的重要程度。


对于训练数据的生成,由于字段数量是有限的,但字段内容值 (column_value) 是大量的。因此我们以一个不为空的字段内容值搭配其他特征为一个训练样本。数据的划分采用常用的模式:训练集测试集划分 7:3,训练集内部训练集验证集划分 8:2。


模型训练的超参数采用常用的模式:


  • Wide 部分 Dropout 比例:0.5

  • Deep 部分 Dropout 比例:0.5

  • Concat 部分 Dropout 比例:0.5

  • Embedding 维度:128

  • 优化器: Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

  • 训练数据 Batch Size: 128

模型性能

敏感字段识别问题为一个多分类问题,训练好的模型在测试集上的整体准确率为 93% 左右。但其在一些具体类型上的效果略有欠缺,通过具体的分析定位问题在于训练数据中包含了一些标注错误的样本,例如:敏感类型为“地址”,但该字段保存的却不是地址类型的数据。

实施流程

模型的整个实施流程如下:



[1] https://en.wikipedia.org/wiki/Data_governance


[2] Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T.,Aradhye, H., … Shah, H. (2016). Wide & Deep Learning for RecommenderSystems. ArXiv:1606.07792 [Cs, Stat].


[3] Kim, Y. (2014). Convolutional Neural Networks for SentenceClassification. In Proceedings of the 2014 Conference on Empirical Methods inNatural Language Processing (EMNLP) (pp. 1746–1751).


2020-03-22 21:042175

评论

发布
暂无评论
发现更多内容

GitHub上已获赞百万!阿里架构师10年磨一剑打造的Java面试小抄(2021版)开源分享

Java架构师迁哥

一文读懂区块链产业最新发展趋势

CECBC

大数据

翻译:《实用的Python编程》02_03_Formatting

codists

Python 人工智能 后端 数据结构与算法 格式化

什么是供应链,供应链有哪些核心指标

学志

技术 指标体系 供应链 电商平台

青帮大佬杜月笙的另一面及其后代现状

wbliu85

为图片添加Emoji,微信这隐藏功能让你不花冤枉钱

彭宏豪95

微信 效率 效率工具 emoji

窝家恶补三月,字节跳动三面,终于喜提offer!分享面试感受

Java架构之路

Java 程序员 架构 面试 编程语言

颠覆技术-智能合约的说明文

CECBC

区块链

区块链电子证照应用平台,区块链电子证照平台建设方案

13530558032

泰山版震撼来袭!阿里巴巴2021年Java程序员面试指导小册已开源

Java架构追梦

Java 架构 面试 金三银四 跳槽

使用doom-emacs三个月后, 春节期间从零配置一份自己的emacs(附详细文档)

lmymirror

电力行业区块链技术应用和产业布局

CECBC

区块链

区块链药品溯源平台-区块链医药追踪溯源

13530558032

如何拿到大厂offer——C++后台学习路线

赖猫

c++ Linux 面试 后台开发 后端

Git教程--git diff命令

生之欢愉,时间同行

git 程序员

Git 教程--git stash命令

生之欢愉,时间同行

git 程序员 git stash

有赞 Flink 实时任务资源优化探索与实践

Apache Flink

flink

Java岗四面字节跳动成功之前,我都刷了那些面试题以及做了那些准备!

Java架构之路

Java 程序员 架构 面试 编程语言

话题讨论 | mongodb拥有十大核心优势,为何国内知名度不是很高?

gmoy-tencent

MySQL 数据库 mongodb 话题讨论 分布式数据库mongodb

阿里巴巴云原生应用安全防护实践与 OpenKruise 的新领域

阿里巴巴云原生

容器 运维 云原生 k8s 调度

程序员成长第十一篇:弄懂需求

石云升

需求 28天写作 2月春节不断更

全新角度剖析--iOS面试

Laravel来信|Event

LeastCoding

laravel Event 观察者模式

话题讨论 | 比特币攻击重现江湖,你准备好了吗?

程序员架构进阶

话题讨论 28天写作 2月春节不断更 话题王者 勒索攻击

什么!?金三银四,2021年阿里最新面试题惨遭泄露?

Java架构之路

Java 程序员 架构 面试 编程语言

人人矿场APP开发|人人矿场系统软件开发

系统开发

少儿学编程系列---如何使用turtle画风车

cloudcoder

微信十年,弹指一挥间

彭宏豪95

微信 产品 互联网 写作

流媒体传输协议之 RTMP

阿里云CloudImagine

TCP 音视频 RTMP 传输协议 流媒体;

2021阿里总监最新手码BAT等大厂面经!GitHub已标星86.2K

比伯

Java 编程 架构 面试 程序人生

算力蜂系统开发|算力蜂软件APP开发

系统开发

基于 Wide & Deep 网络和 TextCNN 的敏感字段识别_文化 & 方法_京东数字科技产业AI中心_InfoQ精选文章