一、背景
分页应该是极为常见的数据展现方式了,一般在数据集较大而无法在单个页面中呈现时会采用分页的方法。
各种前端 UI 组件在实现上也都会支持分页的功能,而数据交互呈现所相应的后端系统、数据库都对数据查询的分页提供了良好的支持。
以几个流行的数据库为例:
查询表 t_data 第 2 页的数据(假定每页 5 条)
MySQL 的做法:
select * from t_data limit 5,5
ostGreSQL 的做法:
select * from t_data limit 5 offset 5
MongoDB 的做法:
db.t_data.find().limit(5).skip(5);
尽管每种数据库的语法不尽相同,通过一些开发框架封装的接口,我们可以不需要熟悉这些差异。如 SpringData 提供的分页接口:
 public interface PagingAndSortingRepository  extends CrudRepository {   Page findAll(Pageable pageable);}
       复制代码
 
这样看来,开发一个分页的查询功能是非常简单的。
然而万事皆不可能尽全尽美,尽管上述的数据库、开发框架提供了基础的分页能力,在面对日益增长的海量数据时却难以应对,一个明显的问题就是查询性能低下!
那么,面对千万级、亿级甚至更多的数据集时,分页功能该怎么实现?
下面,我以 MongoDB 作为背景来探讨几种不同的做法。
二、传统方案
就是最常规的方案,假设 我们需要对文章 articles 这个表(集合) 进行分页展示,一般前端会需要传递两个参数:
 {  "queryPlanner" : {    "plannerVersion" : 1,    "namespace" : "appdb.articles",    "indexFilterSet" : false,    "parsedQuery" : {      "$and" : []    },    "winningPlan" : {      "stage" : "SKIP",      "skipAmount" : 19960,      "inputStage" : {        "stage" : "FETCH",        "inputStage" : {          "stage" : "IXSCAN",          "keyPattern" : {            "_id" : 1          },          "indexName" : "_id_",          "isMultiKey" : false,          "direction" : "backward",          "indexBounds" : {            "_id" : [               "[MaxKey, MinKey]"            ]         ...}
       复制代码
 
可以看到随着页码的增大,skip 跳过的条目也会随之变大,而这个操作是通过 cursor 的迭代器来实现的,对于 cpu 的消耗会比较明显。
而当需要查询的数据达到千万级及以上时,会发现响应时间非常的长,可能会让你几乎无法接受!
或许,假如你的机器性能很差,在数十万、百万数据量时已经会出现瓶颈
三、改良做法
既然传统的分页方案会产生 skip 大量数据的问题,那么能否避免呢?答案是可以的。
改良的做法为:
选取一个唯一有序的关键字段,比如 _id,作为翻页的排序字段;
每次翻页时以当前页的最后一条数据_id 值作为起点,将此并入查询条件中。
如下图所示:
修改后的语句执行计划如下:
 {  "queryPlanner" : {    "plannerVersion" : 1,    "namespace" : "appdb.articles",    "indexFilterSet" : false,    "parsedQuery" : {      "_id" : {        "$lt" : ObjectId("5c38291bd4c0c68658ba98c7")      }    },    "winningPlan" : {      "stage" : "FETCH",      "inputStage" : {        "stage" : "IXSCAN",        "keyPattern" : {          "_id" : 1        },        "indexName" : "_id_",        "isMultiKey" : false,        "direction" : "backward",        "indexBounds" : {          "_id" : [             "(ObjectId('5c38291bd4c0c68658ba98c7'), ObjectId('000000000000000000000000')]"          ]      ...}
       复制代码
 
可以看到,改良后的查询操作直接避免了昂贵的 skip 阶段,索引命中及扫描范围也是非常合理的!
性能对比
为了对比这两种方案的性能差异,下面准备了一组测试数据。
测试方案
准备 10W 条数据,以每页 20 条的参数从前往后翻页,对比总体翻页的时间消耗
 db.articles.remove({});var count = 100000; var items = [];for(var i=1; i<=count; i++){   var item = {    "title": "论年轻人思想建设的重要性-" + i,    "author" : "王小兵-" + Math.round(Math.random() * 50),    "type" : "杂文-" + Math.round(Math.random() * 10) ,    "publishDate" : new Date(),  } ;  items.push(item);    if(i%1000==0){    db.test.insertMany(items);    print("insert", i);     items = [];  }}
       复制代码
 
传统翻页脚本
 function turnPages(pageSize, pageTotal){   print("pageSize:", pageSize, "pageTotal", pageTotal)   var t1 = new Date();  var dl = [];   var currentPage = 0;  //轮询翻页  while(currentPage < pageTotal){      var list = db.articles.find({}, {_id:1}).sort({_id: -1}).skip(currentPage*pageSize).limit(pageSize);     dl = list.toArray();      //没有更多记录     if(dl.length == 0){         break;     }     currentPage ++;     //printjson(dl)  }   var t2 = new Date();   var spendSeconds = Number((t2-t1)/1000).toFixed(2)  print("turn pages: ", currentPage, "spend ", spendSeconds, ".")   }
       复制代码
 
改良翻页脚本
 function turnPageById(pageSize, pageTotal){   print("pageSize:", pageSize, "pageTotal", pageTotal)   var t1 = new Date();   var dl = [];  var currentId = 0;  var currentPage = 0;   while(currentPage ++ < pageTotal){       //以上一页的ID值作为起始值     var condition = currentId? {_id: {$lt: currentId}}: {};     var list = db.articles.find(condition, {_id:1}).sort({_id: -1}).limit(pageSize);     dl = list.toArray();      //没有更多记录     if(dl.length == 0){         break;     }      //记录最后一条数据的ID     currentId = dl[dl.length-1]._id;  }   var t2 = new Date();   var spendSeconds = Number((t2-t1)/1000).toFixed(2)  print("turn pages: ", currentPage, "spend ", spendSeconds, ".")    }
       复制代码
 
以 100、500、1000、3000 页数的样本进行实测,结果如下:
可见,当页数越大(数据量越大)时,改良的翻页效果提升越明显!
这种分页方案其实采用的就是时间轴(TImeLine)的模式,实际应用场景也非常的广,比如 Twitter、微博、朋友圈动态都可采用这样的方式。
而同时除了上述的数据库之外,HBase、ElasticSearch 在 Range Query 的实现上也支持这种模式。
四、完美的分页
时间轴(TimeLine)的模式通常是做成“加载更多”、上下翻页这样的形式,但无法自由的选择某个页码。
那么为了实现页码分页,同时也避免传统方案带来的 skip 性能问题,我们可以采取一种折中的方案。
这里参考 Google 搜索结果页作为说明:
通常在数据量非常大的情况下,页码也会有很多,于是可以采用页码分组的方式。
以一段页码作为一组,每一组内数据的翻页采用 ID 偏移量 + 少量的 skip 操作实现
具体的操作如下图所示:
实现步骤
对页码进行分组(groupSize=8, pageSize=20),每组为 8 个页码;
提前查询 end_offset,同时获得本组页码数量:
db.articles.find({ _id: { $lt: start_offset } }).sort({_id: -1}).skip(20*8).limit(1)
分页数据查询以本页组 start_offset 作为起点,在有限的页码上翻页(skip),由于一个分组的数据量通常很小(8*20=160),在分组内进行 skip 产生的代价会非常小,因此性能上可以得到保证。
小结
随着物联网,大数据业务的白热化,一般企业级系统的数据量也会呈现出快速的增长。而传统的数据库分页方案在海量数据场景下很难满足性能的要求。
在本文的探讨中,主要为海量数据的分页提供了几种常见的优化方案(以 MongoDB 作为实例),并在性能上做了一些对比,旨在提供一些参考。
本文转载自华为云开发者社区。
评论