写点什么

Hugging Face 大语言模型优化技术

  • 2023-10-07
    北京
  • 本文字数:1303 字

    阅读完需:约 4 分钟

大小:684.82K时长:03:53
Hugging Face 大语言模型优化技术

大语言模型的生产部署存在两个主要的挑战,一个是需要大量的参数,一个是需要处理非常长的用于表示上下文信息的输入序列。Hugging Face 基于他们提供大模型服务的经验分享了一些克服这些障碍的技术


Patrick von Platen 在文中介绍的 Hugging Face 研究的三种技术是降低数值精度、使用一种叫作 Flash Attention 的注意力算法,以及使用专门的推理架构


大语言模型需要大量的 VRAM 来加载,从几十(bigcode/starcoder)到数百 GB (Llama、Bloom、GPT3)。第一个优化手段是从float32切换到bfloat16精度:


现在几乎所有的模型都是基于 bfloat16 训练的,如果你的 GPU 支持 bfloat16,就没有理由基于全 float32 精度运行模型。float32 不会给出比训练模型所使用的精度更好的推理结果。


这可以使总体内存消耗减少一半,但可惜的是,在许多情况下仍然需要很大的内存。一种更激进的方法是将模型权重量化为 8 位或 4 位,这已经被证明不会导致显著的性能下降


量化对于文本生成来说特别有效,因为我们所关心的是选择最有可能的下一个标记集合,而不是下一个标记 Logit 分布的确切值。


这将进一步减少所需的内存,使得在只有 16GB VRAM 的 GPU 上运行较小的模型成为可能,尽管代价是推理时间稍长。


von Platen 写道,使用Flash Attention是另一相关键的优化,它是大语言模型用来理解输入标记上下文关系的自注意力层的一种算法,有可能打破输入标记数量的二次增长。


因为该算法太过复杂,无法在这里描述,但可以这么说,它利用了 softmax 规范化统计数据和一些数学手段,在只需要随输入标记线性增长的内存的情况下提供相同的输出。推理性能也得益于算法使用了更快的 SRAM 而不是更慢的 GPU VRAM。


在实践中,目前绝对没有理由不使用 Flash Attention。该算法在数学层面给出了相同的输出,并且速度更快,内存效率更高。


Here recent research can help to make the right choice with two components that quickly become bottlenecks, says von Platen, _positional embeddings_ and the _key-value cache_.


在生产环境中部署大语言模型的第三项优化措施是选择正确的架构,让它们能够有效地处理长文本输入。von Platen 写道,最近的研究有助于我们如何对两个很快成为瓶颈的组件做出选择——一个是_位置嵌入(positional embeddings)_,一个是_键值缓存_。


位置嵌入通过将每个标记的位置编码为数字表示来帮助语言大模型理解序列顺序。对于需要处理大型文本输入任务的大语言模型,应该使用RoPEALiBi等相对位置嵌入技术进行训练。


RoPE 和 ALiBi 位置编码都可以外推到训练期间未遇到过的输入长度,而事实证明,与 RoPE 相比,外推对于开箱即用的 ALiBi 的效果要好得多。


目前的许多大语言模型中已经在使用这两种算法。


键值缓存可以作为对对话上下文进行编码的一种方法。键值缓存在发生每个新交互时增加一个元素,这比为每个请求编码/解码上下文的方法要有效得多。von Platen 详细介绍了两类键值缓存,即Multi-Query-Attention (MQA)Grouped-Query-Attention(GQA)


von Platen 的文章所涵盖的内容不只有本文所概述的这些,他的文章中还提供了实际的例子来证明他的观点,所以请不要错过他的文章。


原文链接

https://www.infoq.com/news/2023/09/hugging-face-optimizing-llms/

2023-10-07 10:224254

评论

发布
暂无评论
发现更多内容

企业架构设计原则之品质均衡性(一)

凌晞

企业架构 架构设计 架构设计原则

我们是如何测试人工智能的(三)数据构造与性能测试篇

测吧(北京)科技有限公司

测试

我们是如何测试人工智能的(八)包含大模型的企业级智能客服系统拆解与测试方法 – 大模型 RAG

测吧(北京)科技有限公司

测试

探秘Linux进程与线程:多进程与多线程的奥秘及实战场景

测吧(北京)科技有限公司

测试

高效管理测试资源:工具化管理测试用例与Bug漏洞

测吧(北京)科技有限公司

测试

AI投研分析,模块化赛道可能会出现新的头部公链

股市老人

我们是如何测试人工智能的(六)推荐系统拆解

测吧(北京)科技有限公司

测试

AI投研分析,模块化赛道可能会出现新的头部公链

股市老人

测试管理实战:优化测试流程,提升项目质量与效率

测吧(北京)科技有限公司

测试

我们是如何测试人工智能的(二)数据挖掘篇

测吧(北京)科技有限公司

测试

云原生数据库下一站:像 MySQL 一样流行,让更多人受益于新技术的发展

百度Geek说

云计算 云原生数据库

我们是如何测试人工智能的(七)包含大模型的企业级智能客服系统拆解与测试方法 – 知识引擎

测吧(北京)科技有限公司

测试

我们是如何测试人工智能的(七)包含大模型的企业级智能客服系统拆解与测试方法 – 知识引擎

测试人

人工智能 软件测试 自动化测试 测试开发

Apache IoTDB 入选国家级规划教材《数据库系统概论(第6版)》!

Apache IoTDB

Digital Realty 将人工智能驱动的能效平台扩展至亚太地区

财见

零信任安全模型:构建未来数字世界的安全基石

GousterCloud

零信任

我们是如何测试人工智能的(五)案例介绍:ASR 效果测试介绍

测吧(北京)科技有限公司

测试

ChatGPT全方位解析:如何培养 AI 智能对话技能?

测吧(北京)科技有限公司

测试

揭秘Linux进程通讯:解决死锁难题的方法论

测吧(北京)科技有限公司

测试

精通Linux性能优化:掌握CPU、内存、网络和IO性能调优的技巧与工具

测吧(北京)科技有限公司

测试

ERC314协议代币开发及合约开发详解

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

今日分享丨单点登录原理及OAuth20授权码协议

inBuilder低代码平台

低代码 单点登录

Mistral Large模型现已在Amazon Bedrock上正式可用

财见

Rust 解码 Protobuf 数据比 Go 慢五倍?记一次性能调优之旅

Greptime 格睿科技

Go rust 性能 序列化 企业号 4 月 PK 榜

C++ Break、Continue 和 数组操作详解

小万哥

程序人生 编程语言 软件工程 C/C++ 后端开发

精通测试规划:打造完备的测试计划与总结报告

测吧(北京)科技有限公司

测试

淘宝商品评论API:连接消费者与商家的桥梁,提升购物体验新途径

技术冰糖葫芦

API 文档

性能测试中的唯一标识问题研究

FunTester

解析名企测试流程:从项目立项到产品上线的完整指南

测吧(北京)科技有限公司

测试

我们是如何测试人工智能的(四)补充:模型全生命周期流程与测试图

测吧(北京)科技有限公司

测试

深度探索名企项目开发:揭秘经典开发流程与测试策略

测吧(北京)科技有限公司

测试

Hugging Face 大语言模型优化技术_生成式 AI_Sergio De Simone_InfoQ精选文章