写点什么

Hugging Face 大语言模型优化技术

  • 2023-10-07
    北京
  • 本文字数:1303 字

    阅读完需:约 4 分钟

大小:684.82K时长:03:53
Hugging Face 大语言模型优化技术

大语言模型的生产部署存在两个主要的挑战,一个是需要大量的参数,一个是需要处理非常长的用于表示上下文信息的输入序列。Hugging Face 基于他们提供大模型服务的经验分享了一些克服这些障碍的技术


Patrick von Platen 在文中介绍的 Hugging Face 研究的三种技术是降低数值精度、使用一种叫作 Flash Attention 的注意力算法,以及使用专门的推理架构


大语言模型需要大量的 VRAM 来加载,从几十(bigcode/starcoder)到数百 GB (Llama、Bloom、GPT3)。第一个优化手段是从float32切换到bfloat16精度:


现在几乎所有的模型都是基于 bfloat16 训练的,如果你的 GPU 支持 bfloat16,就没有理由基于全 float32 精度运行模型。float32 不会给出比训练模型所使用的精度更好的推理结果。


这可以使总体内存消耗减少一半,但可惜的是,在许多情况下仍然需要很大的内存。一种更激进的方法是将模型权重量化为 8 位或 4 位,这已经被证明不会导致显著的性能下降


量化对于文本生成来说特别有效,因为我们所关心的是选择最有可能的下一个标记集合,而不是下一个标记 Logit 分布的确切值。


这将进一步减少所需的内存,使得在只有 16GB VRAM 的 GPU 上运行较小的模型成为可能,尽管代价是推理时间稍长。


von Platen 写道,使用Flash Attention是另一相关键的优化,它是大语言模型用来理解输入标记上下文关系的自注意力层的一种算法,有可能打破输入标记数量的二次增长。


因为该算法太过复杂,无法在这里描述,但可以这么说,它利用了 softmax 规范化统计数据和一些数学手段,在只需要随输入标记线性增长的内存的情况下提供相同的输出。推理性能也得益于算法使用了更快的 SRAM 而不是更慢的 GPU VRAM。


在实践中,目前绝对没有理由不使用 Flash Attention。该算法在数学层面给出了相同的输出,并且速度更快,内存效率更高。


Here recent research can help to make the right choice with two components that quickly become bottlenecks, says von Platen, _positional embeddings_ and the _key-value cache_.


在生产环境中部署大语言模型的第三项优化措施是选择正确的架构,让它们能够有效地处理长文本输入。von Platen 写道,最近的研究有助于我们如何对两个很快成为瓶颈的组件做出选择——一个是_位置嵌入(positional embeddings)_,一个是_键值缓存_。


位置嵌入通过将每个标记的位置编码为数字表示来帮助语言大模型理解序列顺序。对于需要处理大型文本输入任务的大语言模型,应该使用RoPEALiBi等相对位置嵌入技术进行训练。


RoPE 和 ALiBi 位置编码都可以外推到训练期间未遇到过的输入长度,而事实证明,与 RoPE 相比,外推对于开箱即用的 ALiBi 的效果要好得多。


目前的许多大语言模型中已经在使用这两种算法。


键值缓存可以作为对对话上下文进行编码的一种方法。键值缓存在发生每个新交互时增加一个元素,这比为每个请求编码/解码上下文的方法要有效得多。von Platen 详细介绍了两类键值缓存,即Multi-Query-Attention (MQA)Grouped-Query-Attention(GQA)


von Platen 的文章所涵盖的内容不只有本文所概述的这些,他的文章中还提供了实际的例子来证明他的观点,所以请不要错过他的文章。


原文链接

https://www.infoq.com/news/2023/09/hugging-face-optimizing-llms/

2023-10-07 10:224378

评论

发布
暂无评论
发现更多内容

【MySQL技术专题】「问题实战系列」深入探索和分析MySQL数据库的数据备份和恢复实战开发指南(系统底层优化篇)

码界西柚

MySQL 性能调优 技术分析 底层分析

喜报!天翼云电脑获“光华杯”大赛一等奖、最佳创意创新奖!

天翼云开发者社区

云计算 云电脑

Docker学习路线9:运行容器

小万哥

c++ Docker 运维 后端 开发

阿里云瑶池 PolarDB 开源官网焕新升级

阿里云数据库开源

polarDB PolarDB-X PolarDB-PG 阿里云PolarDB

打翻夏日调色盘,华为与你多巴胺一“夏”

最新动态

酒有十千,棋有独步——本土大模型百花齐放,文心一言站稳领先者身位RlueEva-System大模型测评来了!你pick哪一家

TE智库

玩一玩编程式 AOP

江南一点雨

Java spring

文心一言 VS 讯飞星火 VS chatgpt (64)-- 算法导论6.5 3题

福大大架构师每日一题

福大大架构师每日一题

DTT直播回顾:一文带你全面了解openGemini

华为云开源

时序数据库 开源数据库 openGemini

一步一图带你构建 Linux 页表体系 —— 详解虚拟内存如何与物理内存进行映射

bin的技术小屋

内存管理 Linux Kenel Linux内核 页表 Linux内核源码

九科信息中标招商局集团流程挖掘项目

九科Ninetech

陈毅威“掌舵”SUSE 中国 3.0,谋势数字江湖

Rancher

MegEngine Python 层模块串讲(上)

MegEngineBot

Python 深度学习 开源 Data

PPT | 未来工厂与数字孪生

工赋开发者社区

利用增强现实技术辅助跨国传输大文件的优化

镭速

唯一一家!国际测评:文心大模型3.5总分第一,算法模型第一,行业覆盖第一

飞桨PaddlePaddle

人工智能 百度 大模型 文心一言 文心大模型

算网深度融合成趋势,天翼云让政企上云更安全、更便捷!

天翼云开发者社区

云计算 云平台

案例 | 基于机理模型驱动的工业APP集成开发平台及应用实践

工赋开发者社区

[分词]基于Lucene8版本的混合分词器(分词合并)

alexgaoyh

中文分词 lucene Spring Boot 2 混合模型

减少跨国传输大文件所需时间的技巧与工具

镭速

跨国传输大文件

LLaVA:将视觉微调引入大模型

Zilliz

计算机视觉 LLM 大语言模型 模型微调

Flink SQL 双表 JOIN 介绍与原理简析

腾讯云大数据

流计算 Oceanus

借助Databuff,快捷构建Kubernetes可观测能力

乘云数字DataBuff

一些可以极大提高工作效率的 Linux 命令

互联网工科生

Linux 自动化运维

永续期权合约交易所系统开发案例(成品)

薇電13242772558

交易所

虚幻引擎教程——生成云平台指定路径下的EXE文件

3DCAT实时渲染

虚幻引擎 ue UE虚幻引擎

飞桨AI for Science线下交流会:汇聚科学计算人才,携手共建繁荣社区

飞桨PaddlePaddle

人工智能 百度 paddle 飞桨 百度飞桨

Hugging Face 大语言模型优化技术_生成式 AI_Sergio De Simone_InfoQ精选文章