写点什么

作业帮在多云环境下的高可用双活架构优化实践

  • 2023-05-06
    北京
  • 本文字数:2593 字

    阅读完需:约 9 分钟

作业帮在多云环境下的高可用双活架构优化实践

作业帮作为国内主流在线教育品牌之一,旗下有多款教育软件产品与硬件产品,而且每个产品背后的业务都有不同的特性和诉求。在这个背景下,作业帮采用多云架构(阿里云、百度云、腾讯云),并同时使用 MySQL、Redis-Cluster、MongoDB、Elastisearch、TiDB 、OceanBase 这几款数据库。出于高可用和降本需求,作业帮决定将更多 MySQL 业务场景用 OceanBase 代替,本文将和大家分享具体原因,以及OceanBase 4.0与 MySQL5.7 的对比数据。


作者|刘强,就职于作业帮基础架构 DBA 团队,负责分布式数据库的探索和使用,协同研发团队在公司内部推进分布式数据库在业务上的落地。

高可用双活架构方案升级需求


由于作业帮业务的多样性和复杂性,我们对于分布式数据库的使用需求主要基于以下几个方面:


第一,在海量数据的情况下希望减少分库分表的复杂度,并解决单机存储瓶颈


第二,对 I/O 密集型的 SQL 及 CPU 密集型的 SQL 来说,我们希望能够提高响应速度减少它在 MySQL 中对线上业务的影响。


第三,每个业务内部都需要业务人员频繁查询、录取线上数据,并有相应的报表服务以供上级 Leader 查看,而且大数据部门也会有报表需求接入线上数据,这对于线上 MySQL 来说难以支撑,在数据归档及汇总的情况下,也缺乏良好方案。


第四,由于 MySQL 的特性限制,我们需要基于一个外部的高可用组件来实现 MySQL 的高可用架构,在多云环境下,网络环境相对复杂,这对高可用的稳定性提出了更高要求。如果部分业务的请求链路长或复杂,跨云访问会使业务相应耗时增加,影响用户体验。


因此,我们需要探索良好的双活架构方案,初步方案是基于 MySQL ,并引入 DTS 来实现双活架构。这种架构的复杂性及引入过程中 DTS 的异常或中断,对于数据的一致性有很大的挑战。同时在使用公有云的情况下,也希望能够最大程度降低硬件的使用成本。


出于高可用和降本需求,我们决定将更多 MySQL 的业务场景替换为 OceanBase,并对 OceanBase 和 MySQL5.7 进行了多方面的对比。

OceanBase 4.0 对比 MySQL5.7

性能对比

我们使用 32C64GB 的硬件规格分别对 OceanBase 和 MySQL 进行性能、CPU 使用率、磁盘空间占用的测试。


首先,从图 1 可见,在这样的硬件条件下,OceanBase 性能超过了 MySQL。



其次,从图 2 得知,在相同的并发环境下,OceanBase 的 CPU 使用率比 MySQL 低至少一倍以上。



另外,由于 OceanBase 数据压缩及编码的技术相较于 MySQL,能够节约 2/3 以上的磁盘空间,因此,综合上述三方面的对比结果,我们认为 OceanBase 能为作业帮的降本增效提供较大帮助。


在性能方面,我们还测试了 DDL 的执行速度。对于耗时较长的 DDL,MySQL 会有补充延时问题,需要我们引用额外的审核工具来控制它的延迟,而 OceanBase 不存在延时问题。对于执行速度,MySQL 和 OceanBase 相差不大,这让我们更加期待 OceanBase 4.1 的数据旁路导入功能,可以将 DDL 的执行速度大幅提升。不过,我们也发现了一些语法兼容性的问题,例如,OceanBase 对主键的操作语法不支持多个 DDL 合并执行,只能各自单独执行。

架构对比


除了降本增效的需求,高可用也是我们在探索双活架构中最看重的一方面。相较于 MySQL ,OceanBase 的高可用是有延伸的,不需要额外的高可用组件,这有利于解决数据不一致的问题。再加上 OceanBase 的日志具备多副本特性,能够支持在多机房或多城市灵活部署。OceanBase 还便于作业帮实现一些单元化的需求,我们可以将业务单元内的 Leader 数据调度在某一个机房内,实现业务访问的流量闭环,减少跨域读写

字符集对比


最后,我们测试了字符集的支持程度。作业帮成立十年,我们使用 MySQL 的场景和字符集种类都比较多。OceanBase 4.0 当前支持图 3 中显示的几种字符集,在 4.1 版本中增加了对拉丁字符的支持。后续我们也希望 OceanBase 能够扩展字符集及校验集的支持种类。

以上就是作业帮对 OceanBase 和 MySQL 的主要对比数据。在将更多业务场景切换至 OceanBase 的过程中,我们发现,在高可用双活架构方案之外, OceanBase 4.0 的 HTAP 和资源隔离能力也为我们带来许多意外之喜。

HTAP 两大优势:低成本、低延时


OceanBase 是一个具备 HTAP 能力的原生分布式数据库,如何理解 HTAP?引用 OceanBase CTO 的一句话:HTAP 就是在高性能 OLTP 数据库的基础上扩展 OLAP 的能力,能很好支持实时分析。


在作业帮的业务场景中,我们感受到 HTAP 的两大显著优势:低成本和低延时。

  • 低成本:我们希望一套系统能同时支持 OLTP 场景和 OLAP 场景,相比两套系统拥有更高的性价比。

  • 低延时:省去了繁琐费时的 ETL 过程,降低延时,更好支持实时分析。


我们知道,在一套系统同时实现 OLTP 和 OLAP 的能力,其中一项挑战是资源隔离,使业务之间互不影响。这便是 OceanBase 带给我们惊喜的地方。


对于核心业务来说,我们希望能够使用物理资源管理,比如行存副本服务 OLTP,列存副本服务 OLAP,这两种业务是不共享物理资源的,可以做到绝对的隔离。 OceanBase 可以增加额外的只读副本,再通过配置 OBProxy 的 proxy_idc_name 实现读写分离


图 4 为 OceanBase 的物理资源隔离方案,基于只读副本,再增加逻辑机房的情况下,在 OBProxy 中配置逻辑机房的位置。所有 OLAP 的只读流量都会录入只读副本中,避免与 OLTP 副争抢资源


对于成本敏感的逻辑资源隔离OceanBase 在同一租户内就可能实现 OLAP 和 OLTP 的物理资源共享,进而实现资源隔离。


对于逻辑隔离来说,首先 OceanBase 定义了一个大查询,默认将执行时间超过 5 秒的请求判定为大查询,当大查询和短查询同时争抢 CPU 时,大查询会被降低优先级,待 CPU 资源充足时再被挂起,我们可以设置 Large_query_worker_percentage 在同一租户内,大查询最多可以占用 30%的用户线程数。在这种情况下,我们可以有效隔离大查询对 OLTP 业务的影响,优先保证了 OLTP 业务的执行。


我们使用了一些线上业务数据和 SQL 来对比 MySQL 和 OceanBase。在作业帮的业务场景中,一个大业务部门的报表需要多级 Leader 甚至上百人频繁查看,因此,即使是 OLAP 类型的业务,QPS 也可以达到几十甚至上百。我们使用了 60 个并发去压测较复杂的 SQL,通过图 5 可以看出,OceanBase 比 MySQL 最起码快了一倍以上。OceanBase 的 CPU 使用率也基本控制在 25%以下。


在 60 个并发执行 OLAP 业务的同时,我们也用 256 个并发去运行 Sysbench 任务,在 OLAP SQL 扫描量较大的情况下,我们可以看到它的耗时出现了一些抖动(见图 6)。


以上就是作业帮对 OceanBase 4.0 的探索过程,供大家参考。

2023-05-06 16:484857
用户头像
李冬梅 加V:busulishang4668

发布了 983 篇内容, 共 588.7 次阅读, 收获喜欢 1143 次。

关注

评论 1 条评论

发布
用户头像
请教下,QPS和CPU使用的图中的8/16/32/64/128是什么数据?
2023-07-24 20:58 · 四川
回复
没有更多了
发现更多内容

回到过去就能无憾了吗?「幻想短篇 22/28」

道伟

28天写作

Soul 源码阅读 06|Nacos 同步数据分析

哼干嘛

融资融券两融系统搭建开发

v16629866266

数字货币将如何改变日常生活

CECBC

数字货币

苹果设备电池及充电周期

张老蔫

28天写作

MapReduce练习案例4 -求共同好友

小马哥

大数据 hadoop mapreduce 七日更

浅说 SQLite 的许可证模式

Justin

开源 版权保护 28天写作

半导体芯片小白基础知识(1) (28天写作 Day22/28)

mtfelix

芯片 半导体 集成电路 28天写作

老同学遭遇电信诈骗纪实

石君

28天写作 电信诈骗

localStorage和sessionStorage本地存储

我是哪吒

html html5 面试 大前端 html/css

管理笔记[1]:成为管理者的开端“以人文本“

L3C老司机

14天1000+大集群滚动升级,银行柜台竟然毫无感觉

华为云开发者联盟

大数据 金融 FusionInsight 华为云 集群

【Node.js】事件触发器 - 基础篇

德育处主任

Node 28天写作

区块链真正的价值即将“引爆”行业应用

CECBC

区块链金融

GTX1060安装TF2-GPU

IT蜗壳-Tango

七日更

机器学习·笔记之:Gradient Descent

Nydia

28天瞎写的第二百三十二天:转角遇到蚵仔煎

树上

28天写作

创业失败启示录|神奇的茶学

阿萌

28天写作 创业失败启示录 青城

h-index

lidaobing

28天写作 h-index

提词器来了 | 视频号28天(23)

赵新龙

28天写作

Elasticsearch 是分布式文件存储么 ?

escray

elastic 七日更 28天写作 死磕Elasticsearch 60天通过Elastic认证考试

jdk8 String和StringBuilder对象创建所在位置

ilovealt

Java string StringBuilder

架构师训练营第 2 期 第 7 周 作业一

老腊肉

架构师训练营第2期

老外程序员的Java性能优化方式是什么?JVM调优策略+工具+技巧

Java架构追梦

Java 学习 架构 面试 jvm调优

字节跳动:“挖”出来的技术战斗力

李忠良

28天写作

资本市场两极分化将是新常态

JiangX

28天写作

团队建设,凝聚人心打胜战

一笑

管理 团队建设 28天写作

架构解读丨Volcano作业资源预留设计原理

华为云开发者联盟

批处理 Volcano 资源预留 作业资源预留

两种端到端通用目标检测方法

华为云开发者联盟

训练 目标检测 端到端 DETR DeFCN

区块链人才能力评价测试机构亮相

CECBC

区块链人才

谁,是产品的利益相关方?

不离

极客大学认识产品经理 极客大学产品经理训练营 跟着二爷学产品

作业帮在多云环境下的高可用双活架构优化实践_文化 & 方法_刘强_InfoQ精选文章