写点什么

如何用机器学习生成拟真人脸图片?

——使用 DCGAN 技术生成真实人脸

  • 2019-09-09
  • 本文字数:1748 字

    阅读完需:约 6 分钟

如何用机器学习生成拟真人脸图片?

本文中的用于生成虚拟人脸图片的机器学习网络是 Generative Adversarial Networks(GAN)生成对抗网络中的一个应用,Deep Convolutional Generative Adversarial Networks (DCGAN)深度卷积生成式对抗网络。



首先来看一个问题,以下这些面孔中,有哪些是真实存在的?



他们是真的吗?


答案将在文末揭晓,首先先让我们看看如何利用对抗网络生成的虚拟人脸。


深度卷积生成式对抗网络(DCGANs)


作者另一篇文章,利用对抗网络完成卡通图片生成,包含了对抗网络 GAN 的一些基本知识,方便初学者查看。作者同时将这个研究项目分享到了GitHub,以及可以云端运行的Kaggle


本文中提到的人脸图片生成与卡通图片生成技术都是依据 Redford 等人在 2015 年发布的论文《深度卷积生成网络的无监管学习》。具体模型大致如下



作为机器学习过程中重要的一环,原始数据集,作者选用了CelebA中真实明星照片,并进一步进行裁剪加工为 128x128 大小、仅留下人脸部分的照片。


这项实验研究的目的可以描述为,通过机器学习的不断训练,使生成器与判别器形成一种类似“竞争”的关系,两个网络互相抗衡损失,最终到达一个完美的平衡点。那么对于下列损失函数来说,这样的平衡点在哪里呢?


def model_loss(input_real, input_z, output_channel_dim):    g_model = generator(input_z, output_channel_dim, True)
noisy_input_real = input_real + tf.random_normal(shape=tf.shape(input_real), mean=0.0, stddev=random.uniform(0.0, 0.1), dtype=tf.float32) d_model_real, d_logits_real = discriminator(noisy_input_real, reuse=False) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*random.uniform(0.9, 1.0))) d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))) d_loss = tf.reduce_mean(0.5 * (d_loss_real + d_loss_fake)) g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))) return d_loss, g_loss
复制代码


在理想的状态下,最终的均衡状态应满足:


  1. 生成的样本图像最够真实并且接近于真实图像分布。

  2. 判别器收敛到 0.5-50%的正确率使得判别器分辨不出样本是生成的还是真实的。

  3. 生成器收敛到 1.0-100%的正确率使得所有生成图片都足够真实,可以骗过判定器。


训练过程


根据最终状态可以得出以下的超参数:


DATASET_SIZE = 100000IMAGE_SIZE = 128NOISE_SIZE = 100LR_D = 0.00004LR_G = 0.0002BATCH_SIZE = 64EPOCHS = 60BETA1 = 0.5WEIGHT_INIT_STDDEV = 0.02EPSILON = 0.00005
复制代码


经过 60 个训练周期后,最终损失情况如下:



训练结果并不完美,但是依然可以看出判别器的损失接近于 0.5,而生成器的损失平均接近于 1.0,并且,随着训练周期的增加,生成的样本图片质量也有显著的提高。这 60 个训练周期是在特斯拉 K80 GPU(Kaggle 云端)上进行的,总共运行时长约为 100 小时。


结论


最终生成的的高保真的样本图片如下,



大部分的人脸看起来拟真度都相当的高,只有一少部分显得有些畸形,在眼镜等一些细节上也有些瑕疵,但总体来说,在考虑训练过程中资源有限的情况下,它的表现还是非常令人满意的。


展望未来


通过这个人脸生成的研究项目,可以证明使用生成对抗网络生成逼真的人脸图片是绝对有可能的。即使是在这种训练资源有限的情况下,还是可以生成足以以假乱真的图片。那么在更大、更先进的研究实验室里,完全可以生成质量更高、分辨率更清晰的图片。


题外话,科技的发展让这些拟真度非常高的虚假人脸生成更加容易,在面对这些面孔的时候我们也应该抱有更高的警戒心。


回到文初的问题,这几张图片全部都是由尖端科技 StyleGAN 生成的虚假照片。


原文链接:


Face Generator - Generating Artificial Faces with Machine Learning


2019-09-09 14:534122
用户头像

发布了 234 篇内容, 共 160.2 次阅读, 收获喜欢 227 次。

关注

评论

发布
暂无评论
发现更多内容

18M 超轻量系统开源

百度开发者中心

云原生周报 | Prometheus 采用率处于领先地位;Linkerd 发布 K8s自动故障转移特性

百度开发者中心

Python爬虫:看看舞蹈区哪个女网红最给力,如果爬虫不是为了爬视频

程序媛可鸥

Python 程序员 面试

Apache ShardingSphere 企业行|走进中信云网

SphereEx

数据库 开源 企业 ShardingSphere SphereEx

WorkPlus移动平台 | 如何建设“智慧校园”新样态?

BeeWorks

python基础教程:元组和集合,踩坑了

程序媛可鸥

Python中用tuple作为key,写的太详细了

程序媛可鸥

Python 程序员 面试

Python代码报错看不懂?记住这些报错提示单词轻松解决bug,2021年Python开发陷入饱和,

程序媛可鸥

Python 程序员 面试

Python所有方向的学习路线,你们要的知识体系在这,千万别做了无用功

程序媛可鸥

Python 程序员 面试

python3 基础小练习: 判断闰年,2021最新Python算法相关面试大

程序媛可鸥

Python 程序员 面试

python回调函数之获取jenkins构建结果,Python编程零基础

程序媛可鸥

Python 程序员 面试

百度交易中台之账房系统架构浅析

百度开发者中心

数字空间里的普法课堂!最高法工作报告解读登陆百度希壤

百度开发者中心

AI+生物计算:用计算机视觉技术理解细胞生命

百度开发者中心

python爬虫JS逆向:X咕视频密码与指纹加密分析,程序员工作2年月薪12K

程序媛可鸥

Python 程序员 面试

Python基础教程:print输出带颜色的方法详解,Python开发基础面试题

程序媛可鸥

Python 程序员 面试

python实现读取并显示图片的两种方法,15分钟的字节跳动视频面试

程序媛可鸥

Python 程序员 面试

python的默认参数的一个坑(1),快速学会

程序媛可鸥

程序员

Python中return和yield的区别,2021年Python笔试题总结

程序媛可鸥

Python 程序员 面试

python函数练习题,万字长文

程序媛可鸥

Python 程序员 面试

Python教程:抽象类与归一化,Python多线程断点续传

程序媛可鸥

Python 程序员 面试

区块链+供应链金融,中小微企业融资按下“快进键”

旺链科技

区块链 产业区块链 供应链金融

Python 开发编码规范,阿里面试100%会问到的JVM

程序媛可鸥

Python 程序员 面试

fastposter v2.6.1 发布 程序员专属海报生成器

物有本末

海报 fastposter 海报生成器 电商海报

python中把列表中的字符串转成整型的3种方法,收割快手,字节,百度,美团的Offer之旅

程序媛可鸥

Python 程序员 面试

Tapdata 在“疫”线:携手张家港市卫健委争分夺秒实时抗疫

tapdata

数据库 实时数据

Python实现自动发送B站直播弹幕软件,Python开发环境

程序媛可鸥

Python 程序员 面试

Python爬取知乎上搞笑视频,一顿爆笑送给大家,程序员面试题精选100题

程序媛可鸥

Python 程序员 面试

Python爬虫入门教程10:彼岸壁纸爬取,成功入职字节跳动

程序媛可鸥

Python 程序员 面试

python3的变量作用域规则和nonlocal关键字,Python面试及答案

程序媛可鸥

Python 程序员 面试

Python“鉴黄”小程序,我离职后面试收割小米等大厂offer

程序媛可鸥

Python 程序员 面试

如何用机器学习生成拟真人脸图片?_AI&大模型_Greg Surma_InfoQ精选文章