写点什么

如何用机器学习生成拟真人脸图片?

——使用 DCGAN 技术生成真实人脸

  • 2019 年 9 月 09 日
  • 本文字数:1748 字

    阅读完需:约 6 分钟

如何用机器学习生成拟真人脸图片?

本文中的用于生成虚拟人脸图片的机器学习网络是 Generative Adversarial Networks(GAN)生成对抗网络中的一个应用,Deep Convolutional Generative Adversarial Networks (DCGAN)深度卷积生成式对抗网络。



首先来看一个问题,以下这些面孔中,有哪些是真实存在的?



他们是真的吗?


答案将在文末揭晓,首先先让我们看看如何利用对抗网络生成的虚拟人脸。


深度卷积生成式对抗网络(DCGANs)


作者另一篇文章,利用对抗网络完成卡通图片生成,包含了对抗网络 GAN 的一些基本知识,方便初学者查看。作者同时将这个研究项目分享到了GitHub,以及可以云端运行的Kaggle


本文中提到的人脸图片生成与卡通图片生成技术都是依据 Redford 等人在 2015 年发布的论文《深度卷积生成网络的无监管学习》。具体模型大致如下



作为机器学习过程中重要的一环,原始数据集,作者选用了CelebA中真实明星照片,并进一步进行裁剪加工为 128x128 大小、仅留下人脸部分的照片。


这项实验研究的目的可以描述为,通过机器学习的不断训练,使生成器与判别器形成一种类似“竞争”的关系,两个网络互相抗衡损失,最终到达一个完美的平衡点。那么对于下列损失函数来说,这样的平衡点在哪里呢?


def model_loss(input_real, input_z, output_channel_dim):    g_model = generator(input_z, output_channel_dim, True)
noisy_input_real = input_real + tf.random_normal(shape=tf.shape(input_real), mean=0.0, stddev=random.uniform(0.0, 0.1), dtype=tf.float32) d_model_real, d_logits_real = discriminator(noisy_input_real, reuse=False) d_model_fake, d_logits_fake = discriminator(g_model, reuse=True) d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)*random.uniform(0.9, 1.0))) d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake))) d_loss = tf.reduce_mean(0.5 * (d_loss_real + d_loss_fake)) g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake))) return d_loss, g_loss
复制代码


在理想的状态下,最终的均衡状态应满足:


  1. 生成的样本图像最够真实并且接近于真实图像分布。

  2. 判别器收敛到 0.5-50%的正确率使得判别器分辨不出样本是生成的还是真实的。

  3. 生成器收敛到 1.0-100%的正确率使得所有生成图片都足够真实,可以骗过判定器。


训练过程


根据最终状态可以得出以下的超参数:


DATASET_SIZE = 100000IMAGE_SIZE = 128NOISE_SIZE = 100LR_D = 0.00004LR_G = 0.0002BATCH_SIZE = 64EPOCHS = 60BETA1 = 0.5WEIGHT_INIT_STDDEV = 0.02EPSILON = 0.00005
复制代码


经过 60 个训练周期后,最终损失情况如下:



训练结果并不完美,但是依然可以看出判别器的损失接近于 0.5,而生成器的损失平均接近于 1.0,并且,随着训练周期的增加,生成的样本图片质量也有显著的提高。这 60 个训练周期是在特斯拉 K80 GPU(Kaggle 云端)上进行的,总共运行时长约为 100 小时。


结论


最终生成的的高保真的样本图片如下,



大部分的人脸看起来拟真度都相当的高,只有一少部分显得有些畸形,在眼镜等一些细节上也有些瑕疵,但总体来说,在考虑训练过程中资源有限的情况下,它的表现还是非常令人满意的。


展望未来


通过这个人脸生成的研究项目,可以证明使用生成对抗网络生成逼真的人脸图片是绝对有可能的。即使是在这种训练资源有限的情况下,还是可以生成足以以假乱真的图片。那么在更大、更先进的研究实验室里,完全可以生成质量更高、分辨率更清晰的图片。


题外话,科技的发展让这些拟真度非常高的虚假人脸生成更加容易,在面对这些面孔的时候我们也应该抱有更高的警戒心。


回到文初的问题,这几张图片全部都是由尖端科技 StyleGAN 生成的虚假照片。


原文链接:


Face Generator - Generating Artificial Faces with Machine Learning


2019 年 9 月 09 日 14:532796
用户头像

发布了 56 篇内容, 共 15.5 次阅读, 收获喜欢 84 次。

关注

评论

发布
暂无评论
发现更多内容

工业机器视觉系统相机如何选型?

不脱发的程序猿

工业物联网 4月日更 LabVIEW 工业视觉 工业机器视觉

anyRTC 实时音视频打造安全合规壁垒

anyRTC开发者

网络安全 WebRTC RTC

聊聊LiteOS事件模块的结构体、初始化及常用操作

华为云开发者社区

LiteOS 事件 事件结构体 事件掩码

MemVerge CEO表示基于大内存的基础架构将取代性能层级存储

Steven Xu

内存 存储 基础框架 傲腾

源中瑞区块链Baas平台--助力区块链应用落地

13530558032

区块链“数据上链”管理系统

电微13828808271

java中三种内存溢出错误的处理方法

Sakura

4月日更

书单|互联网企业面试案头书之产品经理篇

博文视点Broadview

架构师训练营 模块2作业

eoeoeo

架构实战营

Java 面试题目最全集合1000+ 大放送,能答对70%就去BATJTMD

钟奕礼

Java 编程 程序员 架构 面试

如何使用iMazing将iPhone的数据迁移到iPad

懒得勤快

iphone ipad 苹果 数据迁移 数据备份

GopherChina 2021 定了,干货满满的来了

GoCN技术社区

Go 语言 GopherChina

1000道最新整理的Java 技术考题及解答,抢先直通TMDBATJW拿高薪

钟奕礼

Java 编程 程序员 架构 面试

上次挂在了京东(Java岗)二面不服气,这次终于拿下offer,皇天不负有心人了也是!

钟奕礼

Java 编程 程序员 架构 面试

币安智能链智能合约Dapp系统开发技术

薇電13242772558

智能合约

解读金融高频交易不出错的金手指:分布式事务管理

华为云开发者社区

微服务 事务 华为云 数据一致性 分布式事务管理

区块链商品溯源平台--全流程捍卫食品安全

13530558032

什么是自然语言处理(NLP)?

澳鹏Appen

人工智能 自然语言处理 聊天机器人 nlp 自然语言

安卓rxjava使用,现在做Android开发有前途吗?附面试题答案

欢喜学安卓

android 程序员 面试 移动开发

app启动速度优化,分享一点面试小经验,最全的BAT大厂面试题整理

欢喜学安卓

android 程序员 面试 移动开发

CSS 学习笔记(一) 选择器

U+2647

CSS CSS小技巧 4月日更

2021金三银四面试必备?体系化带你学习:分布式进阶技术手册

比伯

Java 架构 程序人生 编程语言 技术宅

「 最具技术影响力企业号 TOP10 」—— InfoQ 写作平台【 1 周年盛典 】

InfoQ写作社区官方

1 周年盛典 热门活动

Kotlin @inline内联函数

季浩田 🍙

kotlin inline

项目管理之相关方管理

Geek_XOXO

项目管理 复盘 相关方管理

「免费开源」基于Vue和Quasar的前端SPA项目crudapi后台管理系统实战之docker部署(八)

crudapi

Docker Vue crud crudapi quasar

区块链结合农业产业,平台全程溯源

电微13828808271

MySQL数据库函数、DCL详解(及备份恢复操作)

若尘

MySQL 数据库 备份 DCL

全网下载量过亿!12万字阿里内部Java面试手册有多强?

Java架构追梦

Java 架构 面试 成长笔记 阿里巴巴内部资料

如何用机器学习生成拟真人脸图片?_AI_Greg Surma_InfoQ精选文章