写点什么

详细解读 Prometheus 四种指标类型

  • 2020-05-16
  • 本文字数:3951 字

    阅读完需:约 13 分钟

详细解读Prometheus四种指标类型

Prometheus 的客户端库中提供了四种核心的指标类型。但这些类型只是在客户端库(客户端可以根据不同的数据类型调用不同的 API 接口)和在线协议中,实际在 Prometheus server 中并不对指标类型进行区分,而是简单地把这些指标统一视为无类型的时间序列。不过,将来我们会努力改变这一现状的。

Counter(计数器)

Counter 类型代表一种样本数据单调递增的指标,即只增不减,除非监控系统发生了重置。例如,你可以使用 counter 类型的指标来表示服务的请求数、已完成的任务数、错误发生的次数等。counter 主要有两个方法:


//将counter值加1.Inc()// 将指定值加到counter值上,如果指定值<0 会panic.Add(float64)
复制代码


Counter 类型数据可以让用户方便的了解事件产生的速率的变化,在 PromQL 内置的相关操作函数可以提供相应的分析,比如以 HTTP 应用请求量来进行说明:


//通过rate()函数获取HTTP请求量的增长率rate(http_requests_total[5m])//查询当前系统中,访问量前10的HTTP地址topk(10, http_requests_total)
复制代码


不要将 counter 类型应用于样本数据非单调递增的指标,例如:当前运行的进程数量(应该用 Guage 类型)。


不同语言关于 Counter 的客户端库使用文档:


Guage(仪表盘)

Guage 类型代表一种样本数据可以任意变化的指标,即可增可减。guage 通常用于像温度或者内存使用率这种指标数据,也可以表示能随时增加或减少的“总数”,例如:当前并发请求的数量。


对于 Gauge 类型的监控指标,通过 PromQL 内置函数 delta() 可以获取样本在一段时间内的变化情况,例如,计算 CPU 温度在两小时内的差异:


dalta(cpu_temp_celsius{host="zeus"}[2h])
复制代码


你还可以通过 PromQL 内置函数 predict_linear() 基于简单线性回归的方式,对样本数据的变化趋势做出预测。例如,基于 2 小时的样本数据,来预测主机可用磁盘空间在 4 个小时之后的剩余情况:


predict_linear(node_filesystem_free{job="node"}[2h], 4 * 3600) < 0
复制代码


不同语言关于 Guage 的客户端库使用文档:


Histogram(直方图)

在大多数情况下人们都倾向于使用某些量化指标的平均值,例如 CPU 的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统 API 调用的平均响应时间为例:如果大多数 API 请求都维持在 100ms 的响应时间范围内,而个别请求的响应时间需要 5s,那么就会导致某些 WEB 页面的响应时间落到中位数的情况,而这种现象被称为 长尾问题


为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在 0~10ms 之间的请求数有多少而 10~20ms 之间的请求数又有多少。通过这种方式可以快速分析系统慢的原因。Histogram 和 Summary 都是为了能够解决这样问题的存在,通过 Histogram 和 Summary 类型的监控指标,我们可以快速了解监控样本的分布情况。


Histogram 在一段时间范围内对数据进行采样(通常是请求持续时间或响应大小等),并将其计入可配置的存储桶(bucket)中,后续可通过指定区间筛选样本,也可以统计样本总数,最后一般将数据展示为直方图。


Histogram 类型的样本会提供三种指标(假设指标名称为 <basename>):


  • 样本的值分布在 bucket 中的数量,命名为 _bucket{le="<上边界>"}。解释得更通俗易懂一点,这个值表示指标值小于等于上边界的所有样本数量。


 // 在总共2次请求当中。http 请求响应时间 <=0.005 秒 的请求次数为0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.005",} 0.0 // 在总共2次请求当中。http 请求响应时间 <=0.01 秒 的请求次数为0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.01",} 0.0 // 在总共2次请求当中。http 请求响应时间 <=0.025 秒 的请求次数为0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.025",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.05",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.075",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.1",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.25",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.5",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="0.75",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="1.0",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="2.5",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="5.0",} 0.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="7.5",} 2.0 // 在总共2次请求当中。http 请求响应时间 <=10 秒 的请求次数为 2 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="10.0",} 2.0 io_namespace_http_requests_latency_seconds_histogram_bucket{path="/",method="GET",code="200",le="+Inf",} 2.0
复制代码


  • 所有样本值的大小总和,命名为<basename>_sum。


 // 实际含义:发生的2次 http 请求总的响应时间为 13.107670803000001 秒 io_namespace_http_requests_latency_seconds_histogram_sum{path="/",method="GET",code="200",} 13.107670803000001
复制代码


  • 样本总数,命名为<basename>_count。值和 <basename>_bucket{le="+Inf"}相同。


 // 实际含义:当前一共发生了 2 次 http 请求 io_namespace_http_requests_latency_seconds_histogram_count{path="/",method="GET",code="200",} 2.0
复制代码


可以通过 histogram_quantile() 函数来计算 Histogram 类型样本的分位数。分位数可能不太好理解,我举个例子,假设你要计算样本的 9 分位数(quantile=0.9),即表示 90% 的样本的值。Histogram 还可以用来计算应用性能指标值(Apdex score)。


不同语言关于 Histogram 的客户端库使用文档:


Summary(摘要)

与 Histogram 类型类似,用于表示一段时间内的数据采样结果(通常是请求持续时间或响应大小等),但它直接存储了分位数(通过客户端计算,然后展示出来),而不是通过区间来计算。


Summary 类型的样本也会提供三种指标(假设指标名称为 ):


  • 样本值的分位数分布情况,命名为 <basename>{quantile="<φ>"}。


 // 含义:这 12 次 http 请求中有 50% 的请求响应时间是 3.052404983s io_namespace_http_requests_latency_seconds_summary{path="/",method="GET",code="200",quantile="0.5",} 3.052404983 // 含义:这 12 次 http 请求中有 90% 的请求响应时间是 8.003261666s io_namespace_http_requests_latency_seconds_summary{path="/",method="GET",code="200",quantile="0.9",} 8.003261666
复制代码


  • 所有样本值的大小总和,命名为 <basename>_sum。


 // 含义:这12次 http 请求的总响应时间为 51.029495508s io_namespace_http_requests_latency_seconds_summary_sum{path="/",method="GET",code="200",} 51.029495508
复制代码


  • 样本总数,命名为 <basename>_count。


 // 含义:当前一共发生了 12 次 http 请求 io_namespace_http_requests_latency_seconds_summary_count{path="/",method="GET",code="200",} 12.0
复制代码


现在可以总结一下 Histogram 与 Summary 的异同:


  • 它们都包含了 <basename>_sum 和 <basename>_count 指标

  • Histogram 需要通过 <basename>_bucket 来计算分位数,而 Summary 则直接存储了分位数的值。


关于 Summary 与 Histogram 的详细用法,请参考:


https://prometheus.io/docs/practices/histograms/


不同语言关于 Summary 的客户端库使用文档:



原文链接:

https://prometheus.io/docs/concepts/metric_types/


2020-05-16 17:169266

评论

发布
暂无评论
发现更多内容

云小课|MRS基础操作之配置DataNode容量均衡

华为云开发者联盟

大数据 华为云 企业号 2 月 PK 榜 华为云开发者联盟

新型掩码自编码器 AdaMAE,自适应采样

Zilliz

计算机视觉

大数据培训去哪学靠谱?

小谷哥

嵌入式ARM设计编程(二) 字符串拷贝

timerring

arm

IoT设备数据的存储、解析和价值挖掘实践——实践类

阿里云AIoT

阿里云 物联网 IoT

ChatGPT时代的打工人众生相

脑极体

ChatGPT

轻舟已过万重山:华为之路,平板PC之变

脑极体

华为 PC

数字货币现货合约秒合约交易所系统开发案例

开发微hkkf5566

如何运维多集群数据库?58 同城 NebulaGraph Database 运维实践

NebulaGraph

运维 数据库运维

研发提效:服务端技术方案模板参考

邴越

技术方案 模版

令人期待的 SysOM 2.0 OS 迁移、超异构计算系统直播又来了 | 第 63-64 期

OpenAnolis小助手

操作系统 系统运维 sig 龙蜥大讲堂 SysOM

深思考联合昇腾推出AI智慧病理“慧眼”计划

极客天地

Flink X Hologres 构建企业级 Streaming Warehouse

Apache Flink

大数据 flink 实时计算

【2023年最新】轻松搞定MySQL数据库迁移

NineData

MySQL 数据库迁移 数据复制 数据迁移 SqlServer

Blender的布局和工作区

Finovy Cloud

Blende

前端报表如何实现无预览打印解决方案或静默打印

葡萄城技术团队

运维训练营第14周作业

好吃不贵

最佳实践数据服务之设备数据格式ProtoBuf转JSON——实践类

阿里云AIoT

阿里云 物联网 IoT

前端培训班学习哪家比较好

小谷哥

Java开发技术培训应该怎么学习?

小谷哥

2023年中国网约车行业用户体验洞察

易观分析

用户体验 网约车

无需依赖Docker环境制作镜像

tiandizhiguai

Docker k8s

低代码如何快速提升客户体验

力软低代码开发平台

JS常见错误和解决方法集锦

观纵科技

前端 js 错误处理

华为云发布分布式编译构建系统CodeArts Build

华为云开发者联盟

云计算 华为云 企业号 2 月 PK 榜 华为云开发者联盟

Windows安装ElasticSearch

Geek_7ubdnf

elasticsearch

在前端培训机构怎么系统学习前端知识

小谷哥

前端开发技术培训机构怎么选好?

小谷哥

软件测试 | App结构概述

测吧(北京)科技有限公司

测试

详细解读Prometheus四种指标类型_文化 & 方法_Rancher_InfoQ精选文章